-
簡介:中文中文4300字畢業(yè)設(shè)計(論文)譯文題目基于C語言的MIS程序庫設(shè)計學生姓名學號專業(yè)物聯(lián)網(wǎng)班級指導(dǎo)教師評閱教師完成日期2014年12月20日第2頁共10頁統(tǒng)、DBMS和大多數(shù)的系統(tǒng)軟件,都是用C語言設(shè)計的。通過C語言設(shè)計的應(yīng)用軟件,有著大量的成功案例。這證明C語言對于開發(fā)像MIS這樣的應(yīng)用系統(tǒng),也是一種合適而且強大的程序語言。事實上,通過精心選擇常用功能,以及編程使他們形成一個庫,用C語言設(shè)計一個MIS的有效性也能得到顯著提高。本文提到的WEB編程庫是一個很好的例子,該庫的優(yōu)點如下。●網(wǎng)頁編程功能。設(shè)計一個基于MIS的網(wǎng)頁,網(wǎng)頁編程是一項基本的要求。因此這類功能將無疑使程序員設(shè)計起來更為方便。這部分是庫的主要組成部分,它包括設(shè)置頁面風格,顯示頁面標題,顯示頁頭,顯示頁尾等?!癜踩卿浌δ堋τ诂F(xiàn)今的MIS系統(tǒng),登錄系統(tǒng)是必不可少的部分,而且系統(tǒng)的安全性必須得到保證。該功能組將提供一些有用的功能,例如CAPTCHA功能,登錄功能,COOKIE處理功能,郵件功能,密碼修改功能,和密碼獲取功能等,從而簡化了安全登錄系統(tǒng)的設(shè)計?!駥嵱霉δ?。能夠提供一些常用的工具,如計數(shù)器、迷你日歷、加密和編碼功能等。這將給程序員在開發(fā)中帶來一些幫助?!馛語言中的所有設(shè)計。通過使用C語言作為開發(fā)語言,在運行MIS的時候,只需要二進制對象代碼即可。這無疑增加了安全性、可靠性、可擴展性和運行效率。本文介紹了基于C語言的MIS程序庫,在設(shè)計和實施過程中的一些技術(shù)細節(jié)。包括網(wǎng)頁編程功能,安全登錄功能和實用功能,并提供了一個詳細的演示,來展現(xiàn)庫的使用和效果。IIII網(wǎng)頁創(chuàng)作功能網(wǎng)頁創(chuàng)作功能在WEB服務(wù)器和CGI程序之間的核心業(yè)務(wù),是通過標準輸入和輸出對數(shù)據(jù)進行翻譯。通過CGI程序形成一個網(wǎng)頁,發(fā)送網(wǎng)頁內(nèi)容到服務(wù)器的標準輸出是一個必要的工作。由于這個頁面實際上是一個HTML文檔,標準的格式化輸出功能PRINTF就可以完成這個任務(wù)。根據(jù)CGL說明5中,通過CGL形成的頁面,必須由兩部分組成,頁頭和主體,其中頁頭用于發(fā)送屬性信息,而主體則是通過服務(wù)器提供給客戶端實體。這兩個部分通過一個空行分開。
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 11
大?。?0.59(MB)
子文件數(shù):
-
簡介:2009ISECSINTERNATIONALCOLLOQUIUMONCOMPUTING,COMMUNICATION,CONTROL,ANDMANAGEMENT9781424442461/09/2500?2009IEEECCCM2009DESIGNANDREALIZATIONOFANINTELLIGENTACCESSCONTROLSYSTEMBASEDONVOICERECOGNITIONBOCUICOLLEGEOFINFORMATIONHEBEIPOLYTECHNICUNIVERSITYTANGSHAN,CHINAEMAILMIKECUIHEUTEDUCNTONGZEXUECOLLEGEOFINFORMATIONSCIENCEANDENGINEERINGHEBEIUNIVERSITYOFSCIENCEANDTECHNOLOGYSHIJIAZHUANG,CHINAEMAILDIANZIXINXIYEAHNETABSTRACTTHEINTELLIGENTACCESSSYSTEMADOPTSTHETECHNOLOGYOFTHEVOICERECOGNITIONTHATBASEDONTHESPCE061ASINGLECHIPTHESYSTEMHARDWAREISMADEUPOFSPCE061ASINGLECHIP,THEPOWERANDGATINGCIRCUIT,THEEXTENDEDMEMORIZERSPR4096,THEVOICEINPUTANDOUTPUTCIRCUITTHEKEYTECHNOLOGIESARETHEAPPLICATIONOFTHESPCE061ASINGLECHIPONVOICERECOGNITIONANDTHEDESIGNOFTHEDOORCONTROLCIRCUITTHESYSTEMSOFTWAREISMADEUPOFTHEVOICETRAININGMODULE,THEVOICERECOGNITIONMODULE,THEVOICEDATAPROCESSINGMODULE,THEVOICEPLAYINGMODULEANDTHECODEOFINPUTANDOUTPUTMODULETHESYSTEMCOMPLETESTHEFUNCTIONSOFCOLLECTINGTHEVOICEDATA,DISTILLINGCHARACTER,SPECIALVOICERECOGNITIONANDVOICEPLAYINGINTERMSOFINITIALIZINGTHESYSTEMANDTHEIDENTIFICATIONTRAININGACCORDINGTOTHEVOICERECOGNITIONARITHMETICTHEORY,THEPRETREATMENTOFVOICESIGNAL,THECHARACTERDISTILLINGANDPATTERNMATCHINGISANALYZEDTHERESULTSOFTHEEXPERIMENTSINDICATETHATTHESYSTEMCAPABILITYISSTEADYANDTHEIDENTIFICATIONISEFFECTIVETHESYSTEMCANBEAPPLIEDINHOUSEORSMALLOFFICESAFETYPROTECTIONKEYWORDSACCESSCONTROLLINEARPREDICTIONVOICERECOGNITIONPATTERNMATCHCHARACTERDISTILIINTRODUCTIONTHEREAREMANYIDENTIFICATIONTECHNOLOGIESUSEDINCURRENTINTELLIGENTGUARDSYSTEMRELATIVETOOTHERTECHNIQUES,THEVOICERECOGNITIONTECHNOLOGYISGENERALLYREGARDEDASONEOFTHECONVENIENTANDSAFERECOGNITIONTECHNIQUESTHISTECHNIQUEISAKINDOFTECHNIQUETHATMAKESUSEOFTHECREATURECHARACTEROFAHUMANBODYTOCARRYONIDENTIFICATIONBECAUSEEVERYBODYSCREATURECHARACTERISUNIQUEANDSTABLEINACERTAINPERIOD,THEYAREDIFFERENTFROMOTHERSANDDIFFICULTTOBEFABRICATEDANDIMITATEDSOTHEVOICERECOGNITIONTECHNOLOGYCANBEMADEUSEOFIDENTIFICATION,WHICHISSAFE,ACCURATEANDDEPENDABLEIITHECLASSIFICATIONOFVOICERECOGNITIONBECAUSETHEPURPOSEANDFUNCTIONOFTHEVOICERECOGNITIONAREDIFFERENT,THERECOGNITIONISCLASSIFIEDASTALKERRECOGNITIONANDVOICERECOGNITIONANDTHETALKERRECOGNITIONCANBECLASSIFIEDASTWOTYPES,ONEISRELEVANTTOTEXTANDTHEOTHERISIRRELEVANTTOTEXTTHEVOICERECOGNITIONSYSTEMTHATISRELEVANTTOTEXTNEEDSUSERSTOPRONOUNCEACCORDINGTOTHESTATEDCONTENTS,ANDTHENEVERYBODYSSPEECHMODELISBUILTUPACCURATELYBECAUSEIDENTIFICATIONALSONEEDUSERSTOPRONOUNCEACCORDINGTOTHESTATEDCONTENTS,THEEFFECTISVERYGOODTHEVOICERECOGNITIONSYSTEMTHATISIRRELEVANTTOTEXTDOESNTRULEPRONUNCIATIONCONTENTSOFTHETALKERSITISDIFFICULTTOBUILDUPSPEECHMODELSBUTCUSTOMERSMAKEUSEOFTHESYSTEMCONVENIENTLY,ANDITISAPPLIEDWIDELYFROMTHEUSAGE,THESYSTEMCANBECLASSIFIEDASTALKERRECOGNITIONANDTALKERCONFIRMATIONTHEFORMERJUDGESAVOICETHATNEEDSTOBEIDENTIFIEDFROMSEVERALTALKERSTHELATTERJUDGESTHATANIDENTIFIEDVOICECOMESFROMACERTAINTALKERWHETHERORNOTITSOUTPUTONLYHASTWOKINDSOFRESULT,YESORNOTTHECENTRALPROCESSOROFTHISSYSTEMISTHESPCE061ASINGLECHIPTHETALKERCONFIRMATIONTHATISRELEVANTTOTEXTISREALIZEDONTHECHIP,ANDTHENHOMOLOGOUSORDERANDOPERATIONARECARRIEDOUTTHESYSTEMISMAINLYMADEUPOFTALKERIDENTIFICATIONMODULE,GATINGCIRCUITANDDOORLOCKETCINTRAINING,THEVOICEOFTALKERSGETSINTOTHEVOICESIGNALCOLLECTIONCIRCUITTHROUGHAMICROPHONE,ANDTHENTHECOLLECTEDVOICESIGNALSAREPROCESSEDBYTHEVOICEPROCESSINGCIRCUIT,THECHARACTERISTICPARAMETERSOFTALKERSAREDISTILLEDANDSAVEDATLASTTHEDATABASEOFCHARACTERISTICPARAMETERSOFTALKERSISFORMEDINIDENTIFYING,THEVOICETHATNEEDSTOBEIDENTIFIEDISMATCHEDWITHTHEINFORMATIONINTHEDATABASEOFCHARACTERISTICPARAMETERSOFTALKERSOUTPUTCIRCUITSCONTROLTHEGATINGELECTRICALMACHINE,ANDLASTLYTHEDOORLOCKISCONTROLLEDFIGURE1FRAMEOFTHISSYSTEM229MOSTALIKEREFERENCETEMPLATEISFOUNDOUT,THEVOICEISTHEIDENTIFICATIONRESULTAVOICESIGNALSPRETREATMENTTHENOISESSERIOUSLYDISTURBTHEPROCESSINGANDIDENTIFICATIONOFVOICESIGNALS,SOTHENOISESMUSTBEDISPOSEDFIRSTLYTHEINPUTANALOGVOICESIGNALSFROMMICROPHONESMUSTBESAMPLEDANDMEASUREDINORDERTOOBTAINDIGITALVOICESIGNALSBEFORECONVERTINGVOICESIGNALSINTODIGITALSIGNALS,ITISNECESSARYTOFILTERANDCOUNTERDISTURBINFILTERINGTHESIGNALPARTANDNOISESBEYOND1/2SAMPLEFREQUENCYAREFILTEREDTHECLEANVOICESIGNALSAREOBTAINEDLATER,ANDTHENLOWFREQUENCYDISTURBINGISFILTEREDTHROUGHFOREAGGRAVATIONTECHNOLOGY,ESPECIALLYTHEDISTURBINGOF50HZOR60HZTHEHIGHFREQUENCYVOICESIGNALSAREIMPROVEDANDTHEYCANREMOVEDCFLOATING,RESTRAINRANDOMNOISESANDIMPROVETHEFUNCTIONOFENERGYOFCLEANVOICEBCHARACTERISTICDISTILLINGTHESYSTEMADOPTSTHEEVALUATIONMETHODTHATUSESTHECONTRASTVALUEBETWEENDISPERSIONDEGREEOFDIFFERENTSPEAKERSANDSELFDISPERSIONDEGREEOFEACHSPEAKERASCHARACTERISTICPARAMETERSTHEBASICIDEAISTODISTILLGROUPCHARACTERISTICPARAMETERSFROMAVOICESEGMENTOFTHESAMESPEAKER,THATISTOSAYTOMAPTHESEGMENTONADOTOFTHEMULTISPACEDIFFERENTVOICESFROMTHESAMESPEAKERWILLPRODUCEDIFFERENTDOTSINTHECHARACTERISTICSPACETHEFUNCTIONOFMULTIVARIABLEPROBABILITYDENSITYCANDESCRIBETHEDISTRIBUTIONFORDIFFERENTSINGLEPRONUNCIATIONFROMTHESAMESPEAKER,THESEDOTSARERELATIVELYCONCENTRATEDBUTTHEPRONUNCIATIONDISTRIBUTIONFROMDIFFERENTSPEAKERSISAPARTFARTHER,THEGROUPCHARACTERISTICPARAMETERSCANDESCRIBETHETHUMBPRINTOFSPEAKERSEFFECTIVELYACCORDINGTOTHISPRINCIPLE,FORSINGLEPARAMETER,THEFRATIOBETWEENTWOKINDSOFDISTRIBUTIONPARAMETERSCANBEUSEDASEFFECTIVEMEASUREMENTRULETHEFRATIOSHOWSTHECONTRASTBETWEENDISPERSIONDEGREEOFDIFFERENTSPEAKERSANDSELFDISPERSIONDEGREEOFEACHSPEAKERTHEFRATIOOFONECHARACTERISTICPARAMETERISBIGGER,FORTHISCHARACTERISTIC,THEFORMERISBIGGERTHANTHELATTERAVERAGELYTHEREFORETHERECOGNITIONSYSTEMADOPTSABIGGERFRATIOANDTHENTHESYSTEMCAPABILITYISIMPROVEDCMODULEMATCHATPRESENTRESEARCHONTHEMETHODOFMODULEMATCHBASEDONVARIOUSCHARACTERISTICPARAMETERSISMOREANDMOREEMBEDDEDTYPICALMETHODSARETHEVECTORMEASUREARITHMETIC,THEGAUSSMIXTUREMODULEARITHMETIC,THEDYNAMICTIMEWHOLEDTMARITHMETICANDTHEMANUALNERVENETARITHMETICTHEABOVEMETHODSHAVEBOTHADVANTAGEANDWEAKNESSWHENTHEDTMARITHMETICISAPPLIEDINTHEIDENTIFICATIONOFLONGVOICE,THEOPERATIONSOFMODULEMATCHARETOOGREATBUTTHEARITHMETICISSIMPLEANDEFFECTIVEFORSHORTVOICETHELENGTHOFVALIDVOICEISSUBTER3SECONDSIDENTIFICATIONSOTHEMETHODISESPECIALLYAPPLICABLETOTHESPEAKERRECOGNITIONSYSTEMOFSHORTVOICEANDTEXTTHESYSTEMINTHISPAPERADOPTSTHEDTWARITHMETICVEXPERIMENTRESULTSTHEUSERSMUSTCONFIRMTHEPRACTICABILITYANDSTABILITYOFTHISSYSTEMTHENTWOIMPORTANTPARAMETERSOFTHESYSTEMCAPABILITYARETHEERRORIDENTIFICATIONRATIOANDTHEREJECTIONIDENTIFICATIONRATIOTHEFORMERISTHEMISTAKEMADEBYTHEVOICESIGNALSOFNONUSERSACCEPTEDBYTHESYSTEM,THELATTERISTHEMISTAKEMADEBYTHEVOICESIGNALSOFUSERSREJECTEDBYTHESYSTEM,THEYARERELEVANTTOMATCHTHRESHOLDVALUETHESETTINGOFTHEMATCHTHRESHOLDVALUEISRELEVANTTOTHEFUNCTIONANDAPPLICATIONOFTHEVOICELOCKSYSTEMFORFAMILYUSERSTHEERRORIDENTIFICATIONRATIOANDTHEREJECTIONIDENTIFICATIONRATIOOFTHISSYSTEMMUSTBELIKELYLOW,EVENISZEROFIRSTLYACERTAINUSERSVOICEISRECORDEDBYARECORDERTHETONE,THESPEEDANDTHECONTENTAREALLSAME,THENTHERECORDISCOMPAREDWITHTHEREALVOICEFORTYTIMESWITHINDIFFERENTDISTANCEITISSHOWEDINTABLE1AFTERFORTYEXPERIMENTSBYRECORDERTHETIMEOFPASSAGEOFUNCERTAINUSERSISZEROINTHERESULTSTHEEXPERIMENTRESULTISVERYIDEALFORFAMILYUSERSWHENSPEAKERSAREAPARTFROMTHEMICROPHONEFARTHERTHEIDENTIFICATIONRATIODESCENDSOBVIOUSLYTHEREASONISTHATTHERATIOOFTHEENERGYOFUSEFULVOICESIGNALSANDNOISESIGNALSDESCENDSGRADUALLYDISTORTIONAPPEARSWHENCHARACTERISTICDISTILLINGANDLASTLYLEADSTOINACCESSIBILITYREQUESTSINMODULEMATCHBYADJUSTINGTHETHRESHOLDVALUETHEPROBLEMCANBESOLVEDVICONCLUSIONSTHEINTELLIGENTLOCKSYSTEMINTHISPAPERADOPTSTHEVOICERECOGNITIONTECHNOLOGY,NAMELYTHEVOICECONTROLINTELLIGENTSYSTEMOPERATESTHELOCKSYSTEMANDGIVESCORRESPONDINGVOICEANSWERSANDSUGGESTIONSACCORDINGTOTHEVOICESIGNALSCOMPAREWITHOTHERBIOLOGYIDENTIFICATIONTECHNOLOGIES,THEVOICEIDENTIFICATIONTECHNOLOGYHASSUCHADVANTAGESASNONLOSS,NONFORGETTING,CONVENIENCEETCANDALSOITISACCEPTEDBYMANYUSERS,THECOSTOFVOICEINPUTEQUIPMENTSISLOWTHESYSTEMCANBESPREADANDAPPLIEDCONVENIENTLYBECAUSETHESYSTEMDOESNTINVOLVETHEUSERSPRIVACYEXPERIMENTTESTSSHOWTHATTHESYSTEMISSTABLEANDEFFECTIVETHEINNOVATIONINTHEPAPERISTOAPPLYVOICEPROCESSINGTECHNOLOGYOFTHESPCE061ASINGLECHIPINTHELOCKSYSTEM,DEVELOPTHEUSAGESCOPEOFSINGLECHIPS,ENRICHAPPLICATIONFIELDOFVOICERECOGNITIONANDPROVIDEANEWMETHODFORTHEINTELLIGENTLOCKSYSTEMREFERENCES1JIQINGHAN,LEIZHANG,TIERANZHENGVOICESIGNALSPROCESSINGMBEIJINGTSINGHUAUNIVERSITYPRESS,20042TIECHENGYUTHEDEVELOPMENTSTATEOFTHEVOICEIDENTIFICATIONJTHEDEVELOPMENTCOMMUNICATIONWORLD2005,256593SHIQIANGZHAO,BINGLIJIN,MANZHAOAPPLICATIONANDEXPLOITATIONOFTHE16BITSSINGLECHIPPROCESSORSPCE061AJINTERNATIONALELECTRONICELEMENTS2003,537394ZHILINGJIANGTHESYSTEMOFDATAMULTIPROGRAMMINGCOLLECTIONANDTRANSMISSIONUSINGLINGYANGSINGLECHIPCOMPUTERJSICHUANUNIVERSITYOFSCIENCEANDTECHNOLOGY2005,2426972231
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 4
大小: 0.35(MB)
子文件數(shù):
-
簡介:JMARINESCIAPPL2011107075DOI101007/S1180401110438AFASTUNDERWATEROPTICALIMAGESEGMENTATIONALGORITHMBASEDONAHISTOGRAMWEIGHTEDFUZZYCMEANSIMPROVEDBYPSOSHILONGWANG,YURUXUANDYONGJIEPANGNATIONALKEYLABORATORYOFSCIENCEANDTECHNOLOGYONAUTONOMOUSUNDERWATERVEHICLE,HARBINENGINEERINGUNIVERSITY,HARBIN150001,CHINAABSTRACTTHES/NOFANUNDERWATERIMAGEISLOWANDHASAFUZZYEDGEIFUSINGTRADITIONALMETHODSTOPROCESSITDIRECTLY,THERESULTISNOTSATISFYINGTHOUGHTHETRADITIONALFUZZYCMEANSALGORITHMCANSOMETIMESDIVIDETHEIMAGEINTOOBJECTANDBACKGROUND,ITSTIMECONSUMINGCOMPUTATIONISOFTENANOBSTACLETHEMISSIONOFTHEVISIONSYSTEMOFANAUTONOMOUSUNDERWATERVEHICLEAUVISTORAPIDLYANDEXACTLYDEALWITHTHEINFORMATIONABOUTTHEOBJECTINACOMPLEXENVIRONMENTFORTHEAUVTOUSETHEOBTAINEDRESULTTOEXECUTETHENEXTTASKSO,BYUSINGTHESTATISTICALCHARACTERISTICSOFTHEGRAYIMAGEHISTOGRAM,AFASTANDEFFECTIVEFUZZYCMEANSUNDERWATERIMAGESEGMENTATIONALGORITHMWASPRESENTEDWITHTHEWEIGHTEDHISTOGRAMMODIFYINGTHEFUZZYMEMBERSHIP,THEABOVEALGORITHMCANNOTONLYCUTDOWNONALARGEAMOUNTOFDATAPROCESSINGANDSTORAGEDURINGTHECOMPUTATIONPROCESSCOMPAREDWITHTHETRADITIONALALGORITHM,SOASTOSPEEDUPTHEEFFICIENCYOFTHESEGMENTATION,BUTALSOIMPROVETHEQUALITYOFUNDERWATERIMAGESEGMENTATIONFINALLY,PARTICLESWARMOPTIMIZATIONPSODESCRIBEDBYTHESINEFUNCTIONWASINTRODUCEDTOTHEALGORITHMMENTIONEDABOVEITMADEUPFORTHESHORTCOMINGSTHATTHEFCMALGORITHMCANNOTGETTHEGLOBALOPTIMALSOLUTIONTHUS,ONTHEONEHAND,ITCONSIDERSTHEGLOBALIMPACTANDACHIEVESTHELOCALOPTIMALSOLUTION,ANDONTHEOTHERHAND,FURTHERGREATLYINCREASESTHECOMPUTINGSPEEDEXPERIMENTALRESULTSINDICATETHATTHENOVELALGORITHMCANREACHABETTERSEGMENTATIONQUALITYANDTHEPROCESSINGTIMEOFEACHIMAGEISREDUCEDTHEYENHANCEEFFICIENCYANDSATISFYTHEREQUIREMENTSOFAHIGHLYEFFECTIVE,REALTIMEAUVKEYWORDSUNDERWATERIMAGEIMAGESEGMENTATIONAUTONOMOUSUNDERWATERVEHICLEAUVGRAYSCALEHISTOGRAMFUZZYCMEANSREALTIMEEFFECTIVENESSSINEFUNCTIONPARTICLESWARMOPTIMIZATIONPSOARTICLEID167194332011010070061INTRODUCTION1THEOCEANISRICHINMINERALRESOURCES,BIOLOGICALRESOURCESANDENERGYINTHE21STCENTURY,HUMANBEINGSAREFACINGTHECHALLENGESOFTHETHREEHOTISSUESABOUTTHEPOPULATION,THERESOURCESANDENVIRONMENTASTHESPACEANDRESOURCEONTHELANDARELIMITED,THEOCEANWILLGRADUALLYBECOMETHEIMPORTANTNATIONALSTRATEGICOBJECTIVESXUANDXIAO,2007ALARGENUMBEROFCOASTALCOUNTRIES,ESPECIALLYWESTERNINDUSTRIALDEVELOPEDCOUNTRIESANDCHINAAREDEVELOPINGAUTONOMOUSUNDERWATERVEHICLEAUVFOREXPLORINGINOCEANAREAANDSURVEYOFSEABEDSERVICEUNDERWATERTARGETDETECTION,SEARCHANDRECOGNITIONINTHETHREEDIMENSIONALSPACEARETHEKEYTOREALIZEINTELLIGENTOPERATIONYUANETAL,1997THEREFORE,THECOMPUTERVISIONSYSTEMISPARTICULARLYIMPORTANT,ANDTHEIMAGEINFORMATIONPROCESSINGCAPACITYISTHEKEYTOUNDERWATERVEHICLEDYNAMICSENSINGENVIRONMENT,FASTLOCATINGANDTRACKINGOBJECTISALSOTHEFUNDAMENTALMISSIONOFCOMPLETINGUNDERWATERSURVEYSANDAUVOPERATIONSRECEIVEDDATE20100807FOUNDATIONITEMSUPPORTEDBYTHENATIONALNATURALSCIENCEFOUNDATIONOFCHINAUNDERGRANTNO50909025/E091002ANDTHEOPENRESEARCHFOUNDATIONOFSKLABAUV,HEUUNDERGRANTNO2008003CORRESPONDINGAUTHOREMAILWANGSHILONGHRBEUEDUCN?HARBINENGINEERINGUNIVERSITYANDSPRINGERVERLAGBERLINHEIDELBERG2011UNDERWATERIMAGESAREVERYSENSITIVETOVARIOUSNOISESANDOTHERINTERFERENCES,EGPOORLIGHTINGCONDITIONSUNDERTHEWATERWILLCAUSEFALSEDETAILSOFUNDERWATERIMAGES,SUCHASSELFSHADOW,FALSECONTOUR,ETCASAFOCALLIGHTSOURCE,THESEARCHLIGHTMAKESTHELIGHTINTENSITYSHOWALARGERDIFFERENCETHEILLUMINATIONISTHESTRONGESTINTHECENTERANDISGRADUALLYWEAKENINGALONGTHERADIUS,WHICHLEADSTOTHEUNEVENIMAGEBACKGROUNDGRAYUNDERTHEWATER,THEVISIBILITYISLOW,THETRANSPARENCYISONLYONETHOUSANDTHOFTHEAIRANDTHEWATERBODYITSELFISABSORBENTANDSCATTERSLIGHT,WHICHWILLRESULTINLOWS/NANDFUZZYDETAILSMEANWHILEAVARIETYOFSUSPENDEDPARTICLESSCATTERINGANDABSORPTIONOFTHELIGHTWAVEELECTROMAGNETICWAVEINWATERWILLLEADTOSERIOUSGRAYEFFECTONTHECAPTUREDUNDERWATERIMAGEMOREOVER,THEIMPACTOFWATERANDSHAKINGOFTHECAMERALENSANDOTHERFACTORSRESULTSINSOMEIMAGEDISTORTIONWHAT’SMORE,CONSIDERINGTHEIMAGEFORMATIONPROCESS,THEIMAGEACQUISITIONISAMAPPINGOFTWODIMENSIONALIMAGEFROMATHREEDIMENSIONALIMAGEABOVEALL,ITCANBESAIDTHATTHEIMAGEITSELFHASASTRONGAMBIGUITYTHEIMAGESEGMENTATIONISONEOFTHECLASSICRESEARCHTOPICSINCOMPUTERVISIONRESEARCHFIELDSUNDERWATERIMAGESEGMENTATIONISTHEPREMISETOIMAGEANALYSIS,UNDERSTANDINGANDVISUALRECOGNITIONTECHNOLOGYOFAUV,ANDISALSOONEOFSHILONGWANG,ETALAFASTUNDERWATEROPTICALIMAGESEGMENTATIONALGORITHMBASEDONAHISTOGRAMWEIGHTEDFUZZYCMEANSIMPROVEDBYPSO72ITERATIVEPROCESSANDACCELERATESTHECONVERGENCESPEEDFORANIMAGENLH,,FXYISTHEIMAGEGRAYVALUEINTHEPOSITIONOF,XY,{0,1,,1}FL∈?,ANDLTHENUMBEROFALLGRAYSERIESOFTHEIMAGEDEFINETHEHISTOGRAMOFAGRAYIMAGEASHJ,1100JHLXYXYHJΔ??∑∑4WHERE1,,0,ELSEXYFXYJJΔ???AND0,1,2,,1JL?AFTERSTANDARDIZATION,ITFOLLOWSTHATHJPJLHUSINGTHEFUZZYINDEXMASTHEWEIGHT1/MJPJΩTHUS,AWEIGHTEDHISTOGRAMREVISINGMEMBERSHIPIS112121CMIIJJKKJVUJVΩ????∑?5CORRESPONDINGCLUSTERCENTERS11LMIJJILMIJJUJVU∑∑???6THENEWOBJECTIVEFUNCTION211,,CNMIJIIJJUDJV∑∑???UV7WHERE,IDJV?ISTHEDISTANCEFROMJPIXELTOICLUSTERINGCENTER32FURTHERIMPROVINGTHEFUZZYMEMBERSHIPTHEVALUEOFTHEMEMBERSHIPIJU?OFTHENEWALGORITHMMENTIONEDABOVEISINTHERANGEBETWEEN0AND1THISINDICATESTHATEACHDATAWILLBELONGTOACLASSBYDIFFERENTDEGREEOFMEMBERSHIPTHEVALUEOFMEMBERSHIPAFFECTSTHECONVERGENCERATEOFITERATIVEPROGRESSSOWEHEREGIVEAFORMULATHATCANENLARGETHEMAXIMUMDEGREEINTHEMEMBERSHIPANDFURTHERREDUCETHEOTHERMEMBERSHIPSETJSAMPLEBELONGSTOOCATEGORYBYTHELARGESTMEMBERSHIP,ANDTHUSTHEIMPROVEDEXPRESSIONFORTHEDEGREEOFMEMBERSHIP2OJOJOJUUU?????81IJIJIJUUU?????,1,2,,ICIO≠9BYTHEFORMULAABOVE,WECANFINDTHATIFTHEMAXIMUMDEGREEOFMEMBERSHIPVALUEISSMALL,THENTHECOEFFICIENTINFRONTOFITWILLBELARGERANDONTHECONTRARY,THETRUTHISALSOTRUESOTHEFORMULACANMEETTHEREQUIREMENTSTHATENLARGETHEMAXIMUMVALUEOFTHEMEMBERSHIPDEGREEANDREDUCEOTHERMEMBERSHIP4THEFASTHWFCMALGORITHM41THEORYINTRODUCTIONFUZZYCMEANSCLUSTERINGALGORITHMISALOCALSEARCHALGORITHM,ANDITISVERYSENSITIVETOTHEINITIALVALUETHEIMPROPERSELECTIONOFINITIALVALUEISLIKELYTOLEADTOCONVERGENCEOFLOCALMINIMUMPOINTINTHESOLUTIONSPACE,THEPARTICLESWARMOPTIMIZATIONPSOALGORITHMISNOTRESTRICTEDTOONEPOINT,BUTAGROUPOFPOINTSSIMULTANEOUSLYTHATCANAVOIDFALLINGINTOLOCALSOLUTIONSYAOANDXU,2007SOPSOISAKINDOFDYNAMICPOPULATIONBASEDEVOLUTIONARYCOMPUTINGTECHNOLOGY,SHOWINGSTRONGCONVERGENCE,EASYTOIMPLEMENTWITHNOMOREPARAMETERSETTINGSHIGASSHIANDLBA,2003EACHPARTICLEINPSOISASOLUTIONINTHESOLUTIONSPACEITADJUSTSITSFLIGHTBYITSELFANDTHECOMPANION’SFLYINGEXPERIENCETHEBESTPLACETHATEACHPARTICLEEXPERIENCEDDURINGTHEFLIGHTISTHEOPTIMALSOLUTIONOFTHEPARTICLEITSELF,WHICHISCALLEDINDIVIDUALEXTREMUMBESTP,REPLACEDBYTHEEXTREMEVALUEOFEACHCLASSBESTCINTHISPAPERTHEBESTPOSITIONEXPERIENCEDBYTHEENTIREGROUP,THATIS,THEOPTIMALSOLUTIONTHEENTIREGROUPGOTATPRESENT,ISCALLEDTHEGLOBALBESTBESTGPARTICLESWARMOPTIMIZATIONALGORITHMWILLUPDATEPARTICLES’SPEEDANDLOCATIONBYTHEFOLLOWINGEQS10AND11111BEST22BESTIIIIVVCRCXCRGXΩ???????101IIIXXVΗ11WHERE1C,2CARECONSTANTS,CALLEDTHELEARNINGFACTOR12,RRARERANDOMNUMBERSBETWEEN0AND1,WISINERTIAWEIGH,IVISTHEFLIGHTSPEEDINTHEIGENERATION,ANDIXREPRESENTSTHEPARTICLEPOSITIONINTHEIGENERATIONEBERHARTANDSHI2000DISCOVEREDTHROUGHTHERESEARCHTHATINEQ10,WHENΩISLARGE,THEALGORITHMWILLHAVESTRONGGLOBALSEARCHCAPABILITYANDWHENΩISSMALL,THEALGORITHMTENDSTOLOCALSEARCHITISOBTAINEDTHATWECANGETABETTERSEARCHRESULTTHROUGHTHEITERATIVEΩVALUEFROMTHEMAXIMUMTOTHEMINIMUM,WHICHFIRSTFOCUSESONTHEGLOBALSEARCHANDTHENENHANCESTHEABILITYOFTHELOCALSEARCHSO,PARTICLESWARMOPTIMIZATIONPSODESCRIBEDBYSINEFUNCTIONISINTRODUCEDTOHWFCMALGORITHMFORTHEUNDERWATERIMAGESEGMENTATION,INORDERTOOVERCOMETHESHORTCOMINGSTHATFUZZYCMEANSISOVERRELIANTONTHEINITIALVALUEANDISEASYTOFALLINTOLOCALMINIMUMEQ11ANDEQ12CANBEEXPRESSEDASFOLLOWS
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 6
大?。?0.41(MB)
子文件數(shù):
-
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 8
大小: 4.87(MB)
子文件數(shù):
-
簡介:此文檔是畢業(yè)設(shè)計外文翻譯成品(含英文原文中文翻譯),無需調(diào)整復(fù)雜的格式下載之后直接可用,方便快捷本文價格不貴,也就幾十塊錢一輩子也就一次的事外文標題COMPARATIVESTUDYOFWEBSITEPAGESIZEASDESIGNISSUEINVARIOUSWEBSITES外文作者JATINDERMANHAS文獻出處IJINFORMATIONENGINEERINGANDELECTRONICBUSINESS,2018,6,3339如覺得年份太老,可改為近2年,畢竟很多畢業(yè)生都這樣做英文2826單詞,16932字符字符就是印刷符,中文4473漢字。(如果字數(shù)多了,可自行刪減,大多數(shù)學校都是要求選取外文的一部分內(nèi)容進行翻譯的。)COMPARATIVESTUDYOFWEBSITEPAGESIZEASDESIGNISSUEINVARIOUSWEBSITESABSTRACTWEBSITESAREVERYIMPORTANTMEANSOFCOMMUNICATIONINTHISCURRENTERAOFINFORMATIONTECHNOLOGYDIFFERENTINSTITUTIONS/ORGANIZATIONSPUTLOTSOFEFFORTSTOPORTRAYCOMPLETEINFORMATIONONBEAUTIFULLYDESIGNEDWEBSITESORGANIZATIONSTHESEDAYSCONCERNEDMOREINPROVIDINGUSERSWITHALLFACILITIESONLINETHROUGHWEBSITES,WHICHACTASANINTERFACETHROUGHWHICHAUSERCANGETHISWORKDONEWITHOUTPHYSICALLYVISITINGTHEORGANIZATIONWITHTHISTHERESPONSIBILITYOFTHEDESIGNERANDTHECONCERNEDINSTITUTIONS/ORGANIZATIONSINCREASESMANIFOLDSOTHATTHEWEBSITESBEHAVIORSHOULDREMAININTERACTIVEANDQUICKENOUGHFORTHEUSERTOAVAILALLFACILITIESTHROUGHWEBSITESCOMFORTABLYSPEEDANDSIZEOFAWEBSITEAREDIRECTLYRELATEDWITHEACHOTHERSIZEISVERYIMPORTANTWHENTARGETINGUSERSTHATDON’THAVEOPTIMALINTERNETCONNECTIONSAUTHORINTHISPAPERDEVELOPEDANONLINETOOLUSINGNETFRAMEWORKUSINGCTOSTUDYWEBPAGESIZEASDESIGNISSUEINVARIOUSCATEGORIESOFTHEWEBSITESLIKEGOVERNMENT,COMMERCIAL,EDUCATIONAL,SOCIALNETWORKINGANDJOBPORTALSTHEAUTOMATEDTOOLDEVELOPEDBYAUTHORFUNCTIONONTHEBASISOFTHEDIFFERENTSTANDARDSPRESCRIBEDINW3CANDPRESCRIBEDINANALYSISPERFORMEDIN2THETOOLACTLIKEAPARSERANDRENDERSTHECOMPLETECODEOFTHEWEBSITEANDTHENPRODUCESRESULTBYEXAMININGTHEMEMORYREQUIREMENTSOFTHECOMPONENTFILESTHATCONTRIBUTETOTHETOTALSIZEOFTHEWEBSITETHERESULTSPRODUCEDSHOWSTHATOUTOFTHEFIVEDIFFERENTCATEGORIESOFWEBSITES,ITCANBECONCLUDEDTHATNONEOFTHEWEBSITECATEGORIESDETERMINESTHETOTALSIZEBYFIRSTEXTRACTINGTHEFILESOFDIFFERENTEXTENSIONSBYPARSINGTHEHTMLFILERECEIVEDFROMSERVERANDTHENCALCULATINGTHEIRINDIVIDUALSIZESBYREQUEST/RESPONSEMETHODSTHEPARSERWILLTAKEURLOFTHEWEBSITEASINPUTANDTHENSENDITTOTHESERVERANDFROMTHESERVERHTMLCODEOFTHEWEBSITEISSUPPLIEDTOTHEINTERFACEFORMAKINGCOMPARISONWITHTHEEXISTINGSTANDARDSTHEALGORITHMOFTHEAUTOMATEDTOOLDEVELOPEDISGIVENBELOWALGORITHM4FORDETERMININGTOTALSIZEINTERMSOFMEMORYREQUIREMENTSOFAWEBSITEINPUTURLOFTHEWEBSITEOUTPUTTOTALSIZEOFWEBSITEINKBSMETHODSTEPSARENUMBEREDFORBETTERUNDERSTANDABILITYBEGINSTEPIGENERATEAREQUESTFOROBTAININGHTMLFILEOFTHEWEBSITEBYPASSINGURLTOTHESERVERSTEPIIPARSETHEHTMLFILEFORVARIOUSCOMPONENTFILESONONEBYONEBASISSTEPIIIFOREACHTYPEEGIMAGE,CSSETCOFCOMPONENTFILE
下載積分: 10 賞幣
上傳時間:2024-03-17
頁數(shù): 28
大?。?0.34(MB)
子文件數(shù):
-
簡介:WEBPROGRAMMINGLIBRARYDESIGNINCFORMISBOQUSCHOOLOFMATHEMATICSANDINFORMATIONTECHNOLOGYNANJINGXIAOZHUANGCOLLEGENANJING,CHINAMR,QUBO126,COMABSTRACTTHISPAPERDESCRIBESTHETECHNICALDETAILSOFTHEDESIGNANDIMPLEMENTATIONOFAWEBPROGRAMMINGLIBRARYFORWEBBASEDMIS,INCLUDINGWEBPAGEAUTHORINGFUNCTIONS,SECURELOGINFUNCTIONS,ANDUTILITYFUNCTIONS,ALLINTEGRATEDINTOONELIBRARYTHELIBRARYISPROGRAMMEDINCONLINUXPLATFORMWITHGNUTOOLCHAINADEMOEXAMPLEISPROVIDEDTOSHOWTHEUSAGEANDEFFECTOFTHELIBRARYITISPROVENBYTHEFACTTHATCISANAPPROPRIATEPROGRAMMINGLANGUAGETODEVELOPWEBBASEDMISWHICHCANBEOFSECURE,RELIABLEANDSTABLEKEYWORDSWEBPROGRAMMINGLIBRARYWEBPAGEAUTHORINGMISSECURELOGINCGILINTRODUCTIONWITHTHECONSTANTDEVELOPMENTOFCOMPUTERINFORMATIONTECHNOLOGY,MANAGEMENTINFORMATIONSYSTEMSHAVEBEENPOPULARLYUSEDBYALLWALKSOFLIFEONDIFFERENTTOPICSTHEBASICARCHITECTUREOFMISISCISCLIENT/SERVERMODEORIGINALLY,SOMEDEDICATEDCLIENTPROGRAMSAREDEVELOPEDTOCARRYOUTTHEDEDICATEDTASKSBYCOMMUNICATINGWITHTHESERVER,DUETOTHERAPIDDEVELOPMENTOFTHECOMPUTERNETWORKSANDWORLDWIDEWEB,MOREANDMOREMISSTAKEWEBASTHECOMMUNICATIONSYSTEMANDCOMMONLYUSEDSTANDARDBROWSERSASTHEIRCLIENTTHATISJUSTTHEWELLKNOWNB/SBROWSER/SERVERMODE1INORDERTOMEETTHEREQUIREMENTSOFDEVELOPINGWEBBASEDMIS,SOMEINTERPRETEDWEBAUTHORINGLANGUAGES,SUCHASASP,PHP,JSP,ETC,EMERGEASTHETIMESREQUIRETHECOMMONCHARACTERISTICSOFTHEMAREINTERPRETATION,FOREXAMPLE,ASPANDPHPISINTERPRETEDBYDEDICATEDWEBSERVERWHILEJSPISCOMPILEDINTOBYTECODEWHICHTHENRUNNINGONJAVAVIRTUALMACHINENMALTHOUGHTHEDEVELOPINGEFFICIENCYCANBEINCREASED,THEREARESOMEDRAWBACKSINUSINGTHEMTHEPROCESSINGSPEEDBYINTERPRETEDLANGUAGEISOBVIOUSLYSLOWERTHANBYCOMPILEDONES,NOMATTERINTHEORYORPRACTICEALTHOUGHTHESERVERPROGRAMSAREINTERPRETEDDIRECTLYBYTHEWEBSERVER,AFTERALL,THERUNNINGINSTRUCTIONSARESOURCECODESRATHERTHANBINARYOBJECTCODESTHATISSELFEVIDENTTHERUNNINGCODEFORINTERPRETEDLANGUAGEMUSTBETHESOURCECODEWHILEFORCOMPILEDLANGUAGEBETHEBINARYOBJECTCODETHATMEANSTHEREEXISTLATENTDANGERSFORTHEMISPROGRAMSDESIGNEDINTHESEINTERPRETEDLANGUAGES,FOREXAMPLE,THEKEYCODESFORVERIFICATION,SECURITYPROTECTION,ANDSENSITIVEDATA,ETCCANBESEEN9781467320085/12/3100?2012IEEE733ZHAOZHIWUSCHOOLOFMATHEMATICSANDINFORMATIONTECHNOLOGYNANJINGXIAOZHUANGCOLLEGENANJING,CHINAWZZ5958126COMANDMISUSEDBYSOMEMALICIOUSUSERSSMCETHEINSTRUCTIONSAREALLSOURCECODESITISDIFFICULTTOGENERATEMERCHANDISEDSOFTWAREPRODUCTBYUSINGINTERPRETEDLANGUAGESASWELLASSELF-PROTECTTHEINTELLECTUALPROPERTYRIGHTOFTHESOFTWAREASWEALLKNOW,CISAPOWERFULCOMPILINGSYSTEMPROGRAMMINGLANGUAGE4ALMOSTALLTHEOPERATINGSYSTEMS,DBMS,ANDMAJORITYOFSYSTEMSOFTWAREAREDESIGNEDINCLOTSOFSUCCESSFULAPPLICATIONSOFTWAREDESIGNEDINCPROVETHATCISALSOANAPPROPRIATEANDPOWERFULPROGRAMMINGLANGUAGEFORDEVELOPINGAPPLICATIONSYSTEMSSUCHASMISINFACT,BYELABORATELYSELECTINGCOMMONLYUSEDFUNCTIONSANDPROGRAMMINGTHEMTOFORMALIBRARY,THEEFFICIENTTODESIGNAMISINCCANBEALSOIMPROVEDEVIDENTLYTHEWEBPROGRAMMINGLIBRARYMENTIONEDINTHISPAPERISJUSTAGOODEXAMPLEONTHEFIELDTHEADVANTAGEOFTHELIBRARYISDESCRIBEDASTHEFOLLOWINGWEBPAGEAUTHORINGFUNCTIONSWEBPAGEAUTHORINGISTHEBASICREQUIREMENTFORDESIGNINGAWEBBASEDMIS,THEREFORESUCHKINDSOFFUNCTIONSWILLBEUNDOUBTEDLYCONVENIENTTOPROGRAMMERSTODESIGNTHISPARTISTHEMAINCOMPONENTSOFTHELIBRARYINCLUDINGSETTINGPAGESTYLE,DISPLAYINGPAGEHEADER,DISPLAYINGPAGETOP,DISPLAYINGPAGEFOOT,ETCSECURELOGINFUNCTIONSLOGINSYSTEMISANESSENTIALPARTFORNOWADAYSMIS,ANDTHESECURITYOFTHESYSTEMMUSTBEENSUREDTHISGROUPOFFUNCTIONSWILLPROVIDESOMEUSEFULFUNCTIONSSUCHASCAPTCHAFUNCTION,LOGINFUNCTION,COOKIEPROCESSFUNCTION,MAILFUNCTION,PASSWORDMODIFYINGFUNCTION,ANDPASSWORDGETTINGBACKFUNCTION,ETC,TOSIMPLIFYTHEDESIGNOFASECURELOGINSYSTEMUTILITYFUNCTIONSSOMECOMMONLYUSEDUTILITIESSUCHASACCESSCOUNTER,MINICALENDAR,ENCRYPTINGANDENCODINGFUNCTIONS,ETCAREPROVIDED,WHICHWILLGIVESOMEASSISTANTSTOPROGRAMMERSINDEVELOPMENTALLDESIGNINCBYUSINGCASTHEDEVELOPINGLANGUAGE,ONLYTHEBINARYOBJECTCODESARENEEDEDWHENTHEMISRUNNINGTHATWILLUNDOUBTEDLYINCREASETHESECURITY,RELIABILITY,STABILITY,ANDTHERUNNINGEFFICIENCYGREATLYTHISPAPERDESCRIBESTHETECHNICALDETAILSOFDESIGNANDIMPLEMENTATIONOFTHEWEBPROGRAMMINGLIBRARYINCFORWEBSYSTEMWHICHGENERALLYCONSISTSOFTHREECOMPONENTS,ALOGINFORMPAGE,ACAPTCHA3,6IMAGE,ANDTHECORRESPONDINGCOOKIEMECHANISMASECURELOGINSYSTEMFORWEBBASEDMISISDESIGNEDINCBYTHEAUTHOROFTHISPAPER,ANDCONFINEDTOTHELENGTHOFTHETHESIS,THEDESIGNOFITANDTHECORRESPONDINGMAILFUNCTIONSANDCOOKIEPROCESSFUNCTIONSWILLBEDESCRIBEDINDETAILSINOTHERPAPERSTHEREFORENOTBEMENTIONEDFURTHERBESIDESTHESE,SOMEOTHERCOMMONLYUSEDFUNCTIONSAREALSONEEDEDFORSECURELOGIN,MAINLYINCLUDINGMAILAGENCYCONFIGURATION,PASSWORDMODIFICATION,MAILBOXCONFIGURATION,ANDPASSWORDGETTINGBACK,ETCAMAILAGENCYCONFIGURATIONTOTRANSMITEMAILS,ANSMTPSERVERISREQUIREDGENERALLY,THEREARETWOWAYSTOIMPLEMENTANSMTPSERVER,THATIS,BYRUNNINGSUCHASERVERATTHESAMEHOSTASTHEMISIN,ORBYINVOKINGAMAILAGENCYTHELATTERISTHEWAYPOPULARLYUSEDINVARIOUSKINDSOFMISTOINVOKEAMAILAGENCY,FOURESSENTIALFACTORSAREREQUIRED,IETHEUSEMAMEANDPASSWORDOFTHEACCOUNTFORTHATAGENCY,THEMAILBOXNAMEOFTHATACCOUNTANDTHEDOMAINNAMEOFTHEAGENCYTOCONVENIENTFORTHECONFIGURATION,FUNCTIONWEB_MAILAGENCYOISDESIGNEDFIG5SHOWSTHEPAGETOCONFIGUREAMAILAGENCYWITHTHEFOURFACTORSOFCOURSE,THISFUNCTIONSHOULDONLYBEUSEDBYTHEADMINOFTHEMISCONFIGMAILAGENCYPASSWORDIMYMAILAGENCYPASSWORDMYMAILSMTP,126COMMYMAILAGENCY126,COMSUBMITI?FIGURE5FONTIOFCONFIGURINGMAILAGENCYFUNCTIONWEBMAILAGENCYOACCEPTSTHEFOURFACTORSBYTHEPAGEFORMSHOWNINFIG5,ANDTHENSTORETHEMINTHESERVERINORDERTOPROTECTTHEINFORMATIONFROMBEINGSTOLEN,THEINFORMATIONISENCRYPTEDFIRSTWITHRC4ALGORITHM,ANDTHEN,ENCODEDWITHBASE64ALGORITHMTOCONVENIENTFORSTORINGWHENEVERAMESSAGEISNEEDEDTOBEMAILED,THEMAILAGENCYINFORMATIONISREADIN,ANDTHEN,ENCODEDANDDECRYPTEDINTOORIGINALSBMODIFYINGPASSWORDTHEPURPOSEOFTHEFUNCTIONISPROVIDINGAPAGEFORMFORUSERSTOMODIFYTHEPASSWORDOBVIOUSLYTHEREARETHREEINPUTFORMCONTROLARENEEDED,INWHICHONEFORORIGINALANDTHEOTHERTWOFORTHENEWPASSWORDANDTHEREPEATEDONERESPECTIVELYTHEFORMPAGEOFITISNOTADIFFICULTTASKBUTTHEPROCESSOFTHEPASSWORDISANIMPORTANTISSUESOMESYSTEMSSTORETHEPASSWORDASPLAINTEXT,ANDCOMPAREITWITHTHEINPUTDATAFROMTHEUSERALTHOUGHTHISISTHESIMPLESTWAYTOVERIFYTHEPASSWORDBUTALSOADANGERONESINCETHEPLAINTEXTOFTHEPASSWORDISSTOREDWHICHCANBESEENBYMALICIOUSADMINISTRATORSAGOODWAYTORESOLVETHEPROBLEMISTOSTORETHEPASSWORDINANENCRYPTEDFORMANDCOMPAREITWITHTHEENCRYPTEDFORMOFPASSWORDTHEREAREVARIOUSENCRYPTIONMETHODSANDONEOFCOMMONLYUSEDISBYMD5,THECORRESPONDINGSYSTEMFUNCTIONOFWHICHISCRYPTO735CCONFIGURINGMAILBOXCONFIGURINGMAILBOXISALSOACOMMONLYUSEDFUNCTION,FOREXAMPLE,WHENMODIFYINGUSERSPASSWORD,GETTINGBACKPASSWORD,ANNOUNCINGMESSAGESBYADMIN,ETCFUNCTIONWEBMAILBOXOISDESIGNEDTOACCOMPLISHCONFIGURATIONITACCEPTSTHEMAILBOXOFTHEUSERBYUSINGTHEPAGEFORMANDSTORETHEMAILBOXIFTHEPASSWORDPROVIDEDBYUSERISCORRECTDPASSWORDGETTINGBACKFUNCTIONTHEREARETWOFACTORSFORPASSWORDGETTINGBACK,USEMAMEANDTHEUSERSMAILBOXTHEFORMPAGEFORITISSIMPLYJUSTCONSISTINGOFANINPUTFORMCONTROLTOENTERTHEUSEMAMETHEMAILBOXOFTHEUSERMUSTBEPRESETBYUSERFIG6SHOWSTHEPAGEFORMGENERATEDBYTHEFUNCTIONTRYANEWCODEGETBACKPASSWORDUSERNAME11VERIFICATIONLCODERL1LOGINFIGURC6FORMOFGETTINGBACKPASSWORDITISOBVIOUSLYSIMILARTOTHEFORMOFLOGINEXCEPTTHATTHEREISNOPASSWORDREQUIREDTHEREFORE,INFACT,ITISACCOMPLISHEDBYTHESAMEFUNCTIONASFORLOGIN,WEB_USERLOGINOWITHTHEUSEMAME,THECORRESPONDINGMAILBOXOFTHEUSERCANBEOBTAINEDANDANEWPASSWORDISRANDOMLYGENERATEDTHENEWPASSWORDISSENTTOTHEUSERSMAILBOXASTHEPLAINTEXT,ANDATSAMETIME,ISENCRYPTEDANDTHENSTOREDTHEPURPOSEOFTHECAPTCHAINTHEFORMISAVOIDINGMALICIOUSUSERSTODOTHEFUNCTIONAUTOMATICALLYWHICHMAYGENERATEFLOODOFEMAILSIVUTILITYFUNCTIONSSOMEOTHERCOMMONLYUSEDUTILITYFUNCTIONSAREALSONEEDEDINTHEDESIGNINGOFWEBBASEDMIS,FOREXAMPLE,ACCESSCOUNTER,MINICALENDAR,RC4ENCRYPTION,ANDBASE64ENCODINGANDDECODING,ETCAACCESSCOUNTERTHEREARETWOTYPESOFACCESSCOUNTER,CHARACTERBASEDANDIMAGEBASEDTHELATTERISSELECTEDFORTHECOUNTERFUNCTIONINTHELIBRARYINORDERTOSIMPLIFYTHESTRUCTUREOFTHECGIFILE,THEDOTMATRIXOFTHEDIGITSISUSEDTOFORMTHECOUNTERIMAGEANDTHEDOTMATRIXINFORMATIONISCODEDDIRECTLYINTOTHESOURCECODETHEBITMAP7ISSELECTEDASTHECOUNTERIMAGEFORMATTHEREALEFFECTOFTHEACCESSCOUNTERIMPLEMENTFORTHELIBRARYISSHOWNASINTHEFIG2MENTIONEDABOVEITISWORTHYNOTEDTHATANACCESSCOUNTERSHOULDNOTBEREFRESHABLE,THATIS,ONLYWHENANEWSESSIONOCCURSCANTHECOUNTERINCREASETHISCANBEIMPLEMENTEDBYUSINGACOOKIEBMINICALENDARTHEREAREWIDEVARIETIESOFDIFFERENTFORMSOFMINICALENDARANDASIMPLEIMPLEMENTATIONISUSEDHERETHEEFFECTOFTHE
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 4
大小: 0.56(MB)
子文件數(shù):
-
簡介:USEOFVOICERECOGNITIONFORCONTROLOFAROBOTICWELDINGWORKCELLJKEVINWATSON,DOUGLASMTODD,ANDCLYDESJONES,111ABSTRACTTHISPAPERDESCRIBESWORKUNDERWAYTOEVALUATETHEEFFECTIVENESSOFVOICERECOGNITIONSYSTEMSASANELEMENTINTHECONTROLOFAROBOTICWELDINGWORKCELLFACTORSBEINGCONSIDEREDFORCONTROLINCLUDEPROGRAMEDITORACCESSSECURITYPREOPERATIONCHECKLISTREQUIREMENTS,WELDINGPROCESSVARIABLECONTROLANDROBOTMANIPULATORMOTIONOVERRIDESINTHELATTERTWOCATEGORIES,MANUALVOCALCONTROLISBEINGCOMPAREDAGAINSTMANUALTACTILECONTROLANDFULLYAUTOMATICCONTROLINTERMSOFSPEEDOFRESPONSE,ACCURACY,STABILITY,RELIABILITYANDSAFETYINTRODUCTIONVOICERECOGNITIONTECHNOLOGYISNOWRECOGNIZEDASAPOTENTIALMEANSFOREASINGTHEWORKLOADOFOPERATORSOFCOMPLEXSYSTEMS11NUMEROUSAPPLICATIONSHAVEALREADYBEENIMPLEMENTED,AREINVARIOUSSTAGESOFDEVELOPMENT,ORAREUNDERCONSIDERATION25THESEINCLUDEDATAENTRYCONTROLOFAIRCRAFTSYSTEMS,ANDVOICEIDENTIFICATIONANDVERIFICATIONFORSECURITYPURPOSESVOICECONTROLHASALSOBEENPROPOSEDFORUSEABOARDTHESPACESTATION68ONEPRIMEAREAFORAPPLICATIONWOULDBECONTROLOFSOMEFUNCTIONSOFROBOTSUSEDFORINTRAANDEXTRAVEHICULARINSPECTIONASSEMBLY,REPAIR,SATELLITERETRIEVAL,ANDSATELLITEMAINTENANCEWHENACREWMEMBERISSERVINGINASUPERVISORYCAPACITYORTHESYSTEMISOPERATINGINATELEOPERATIONMODEVOICECONTROLOFSENSORSANDPROCESSVARIABLESWOULDFREETHECREWMEMBER’SHANDSFOROTHERTASKS,SUCHASDIRECTCONTROLOROVEMDEOFTHEMANIPULATORMOTIONSIMILARLYTHEWORKLOADASSOCIATEDWITHCONTROLOFMANYONBOARDEXPERIMENTSCOULDBEEASEDTHROUGHTHEUSEOFTHISTECHNOLOGYTHISPAPERDESCRIBESTHEAPPLICATIONOFVOICERECOGNITIONFORCONTROLOFAROBOTICPRESENTEDATTHE1986IEEEINTERNATIONALCONFERENCEONSYSTEMSMAN,ANDCYBERNETICS,HELDINATLANTA,GEORGIAOCTOBER14171986JKEVINWATSONANDDOUGLASMTODDAREWITHTHEROCKETDYNEDIVISIONOFROCKWELLINTERNATIONALSUITE302227DRAKEAVENUE,SWHUNTSVILLEAL35805CLYDESJONES,UI,ISWITHNASAMARSHALLSPACEFLIGHTCENTER,AL3581216WELDINGWORKCELLTHISISACOMPLEXSYSTEMINVOLVINGINPUTSFROMMULTIPLESENSORSANDCONTROLOFAWIDEVARIETYOFROBOTMANIPULATORMOTIONSANDPROCESSVARIABLESWHILEMANYFUNCTIONSAREAUTOMATEDAHUMANOPERATORSERVESINASUPERVISORYCAPACITYREADYTOOVEMDEFUNCTIONSWJHENNECESSARYINTHEPRESENTINVESTIGATIONACOMMERCIALLYAVAILABLEVOICERECOGNITIONSYSTEMISBEINGINTEGRATEDWITHAROBOTICWELDINGWORKCELLATNASAMARSHALLSPACEFLIGHTCENTER,WHICHISUSEDASATESTBEDFOREVALUATIONANDDEVELOPMENTOFADVANCEDTECHNOLOGIESFORUSEINFABRICATIONOFTHESPACESHUTTLEMAINENGINEINTHESYSTEMUNDERDEVELOPMENT,SOMEFUNCTIONSDONOTYETHAVEAUTOMATICCLOSEDLOOPCONTROLTHUSREQUIRINGCONTINUOUSMONITORINGANDREALTIMEADJUSTMENTBYTHEHUMANOPERATORPRESENTLY,THESEOVEMDESAREINPUTTOTHESYSTEMTHROUGHTACTILECOMMANDSEPUSHINGBUTTONSTURNINGKNOBSFORPOTENTIOMETERS,ORADJUSTINGMECHANICALDEVICESSINCETHEOPERATORMONITORSTHEPROCESSPRIMARILYVISUALLY,HEMUSTEITHERLOOKAWAYFROMTHEPROCESSTOFINDTHEPROPERBUTTONORKNOBORRELYON“MUSCULARMEMORY”MUCHASATOUCHTYPISTDOESINTHEFIRSTCASE,THETIMEOFRESPONSETOADEVIANTCONDITIONMAYBEEXCESSIVEINTHESECONDCASETHEREISANINCREASEDPROBABILITYOFASECONDARYEMRBEINGINTRODUCEDBYTHEOPERATORAVOICERECOGNITIONSYSTEMCOULDREDUCETHERESPONSETIMEREQUIREDFROMTHEOPERATORTHEPROBABILITYOFPUSHINGTHEWRONGBUTTONSHOULDSIMILARLYBEREDUCEDALSO,OPERATORFATIGUESHOULDBEMINIMIZEDSINCETHEOPERATORCANCONTINUOUSLYMONITORTHEPROCESSDURINGOVEMDEINPUT,THEEFFECTOFTHECHANGECANBEOBSERVEDMOREQUICKLYTHUSIFTHEDESIREDVALUEISEXCEEDEDANDREVERSECORRECTIONISREQUIRED,ITSHOULDBEACCOMPLISHEDMOREQUICKLY,ALLOWINGLESSOVERSHOOTTHISREDUCTIONINOSCILLATIONABOUTTHEDESIREDVALUEMAKESTHESYSTEMMORESTABLEANOTHERFACTORTHATCANBEIMPROVEDISOPERATORSAFETYINASAFETYCRITICALSITUATION,THEROBOT’SOPERATIONCANBEHALTEDIMMEDIATELYBYUSEOFTHE“EMERGENCYSTOP,’’ORESTOPMODE,WHICHISINITIATED,CONVENTIONALLYBYDEPRESSINGALARGEBUTTONIFANOPERATORINADVERTENTLYFINDSHIMSELFINAHAZC2721708870600001601001987IEEEARDOUSSITUATION,ITMAYBENECESSARYFORHIMTOINITIATETHEESTOPSEQUENCESHOULDTHEOPERATORNOTBEWITHINREACHOFTHEBUTTON,HOWEVER,HEMAYBEUNABLETOTAKETHENECESSARYACTION,AND,ASARESULTCOULDSUFFERSERIOUSINJURYHAVINGTHECAPABILITYOFSTOPPINGTHEROBOTBYISSUINGAVOICECOMMANDCOULDSIGNIFICANTLYIMPROVETHEOPERATOR’SSAFETYBYENABLINGHIMTOSTOPTHEROBOTEVENWHENNOTWITHINREACHOFTHEESTOPBUTTONMANUALCORRECTIONSAREOCCASIONALLYREQUIREDTOADJUSTTHELOCATIONATWHICHTHEWELDFILLERWIREENTERSTHEWELDPOOLPROPERENTRYLOCATIONISABSOLUTELYCRITICALTOSOUNDWELDQUALITYADJUSTMENTSAREMADEEITHERBYMANUALLYADJUSTINGMECHANISMSTHATHOLDTHEWIREFEEDGUIDETUBEORBYISSUINGTACTILECOMMANDSTOASERVOMECHANISMUSEOFAVOICERECOGNITIONSYSTEMCOULDELIMINATETHENEEDFORTHEOPERATORTOPLACEHISHANDWITHINTHEWORKINGENVELOPEOFTHEROBOTENDEFFECTORORIFSERVOMECHANISMSAREEMPLOYED,COULDIMPROVESPEEDOFRESPONSEANDSTABILITYANOTHERASPECTOFROBOTOPERATIONINANINDUSTRIALENVIRONMENTTHATISVERYIMPORTANTISTHESECURITYOFAPROGRAMEDITINGCAPABILITYOFTHESYSTEMUNDERNOCIRCUMSTANCESSHOULDANYUNAUTHORIZEDPERSONBEABLETOENTERTHISPROGRAMMINGMODEANDALTERTHEROBOT’SPROGRAMAVOICERECOGNITIONSYSTEMCANPROVIDETHENECESSARYSECURITYBYALLOWINGACCESSONLYFORINDIVIDUALSWHOAREAUTHORIZEDANDWHOSEVOICESCANBEIDENTIFIEDBYTHESYSTEMBACKGROUNDROBOTICWELDINGISUNDERDEVELOPMENTBYNASAANDROCKETDYNEFORTHEAUTOMATIONOFWELDSONTHESPACESHUTTLEMAINENGINETHATAREPRESENTLYMADEMANUALLYTHEPROGRAMMABILITYOFAROBOTCANREDUCETHEPERCENTAGEOFWELDINGDEFECTSTHROUGHACOMBINATIONOFCONSISTENCYANDREPEATABILITYUNATTAINABLEBYITSHUMANCOUNTERPARTSTODOTHIS,THEROBOTISPROGRAMMEDTOANOMINALWELDPATHANDLEVELOFWELDPROCESSPARAMETERSIE,CURRENT,TRAVELSPEEDVOLTAGE,WIREADDITIONRATESOMEADJUSTMENTOFTHESEVALUESISOFTENNECESSARYDUETOCONDITIONSCHANGINGDURINGTHEWELDAHUMANMAKINGAMANUALWELDACCOMPLISHESTHISADJUSTMENTI€€€CONTROLSYSIERNSMOGOZMEASAFETYFEATURETOACCOMPLISHTHIS,THEVRCCHASBEENINTERFACEDINTOTHEWORKCELLEMERGENCYSTOPCIRCUITTHEEMERGENCYSTOPCIRCUITINTHEROBOTICWORKCELLWILLSHUTDOWNTHEWELDINGPROCESSANDTHEMECHANICALMOTIONOFTHEMANIPULATORSTHROUGHTHEUSEOFADIGITALSIGNALFROMTHEVRCC,ARELAYISENERGIZEDTHATINTERRUPTSTHENECESSARYCIRCUITSINTHEWELDPOWERSUPPLYANDROBOTCONTROLLERWITHTHEUSEOFTHEVOICERECOGNITIONSYSTEMASASAFETYCONTROLFORTHISWORKCELL,WEHAVEADDEDATHIRDLEVELOFREDUNDANCYINTOTHEEMERGENCYSTOPPINGABILITYOFTHEOPERATORINADDITIONTOTHEPRESENTEMERGENCYSTOPBUTTONSMANIPULATORMOTIONSARECONTROLLEDTHROUGHANAXISSELECTBUTTONINCONJUNCTIONWITHAPOSITIVEORNEGATIVEJOGBUTTONTHATISDEPRESSEDBYTHEOPERATORONCETHEOPERATORHASSELECTEDANAXIS,HEDEPRESSESONEOFTHEJOGBUTTONSFORTHEDESIREDTRAVELDISTANCETHISFUNCTIONWASSELECTEDTOBECONTROLLEDBYTHEVRCCBECAUSEOFITSUTILIZATIONDURINGAUTOMATICOPERATIONOFTHEMANIPULATORTOCORRECTTRAJECTORYERRORSTHECIRCUITRYNECESSARYTOCONTROLTHISOPERATIONDRAWSTHESIGNALTOGROUNDTHROUGHTHEACTIVATIONOFRELAYSFORTHEPOSITIVEORNEGATIVEJOGMOTIONBECAUSEMOTIONISACHIEVEDONLYASLONGASTHESESIGNALSAREACTIVELOWTHEYCANBECONTROLLEDBYDISCRETEDIGITALSIGNALSFROMTHEVRCCANALOGCONTROLSIGNALSTHEREAREMANYVARIABLESTHATAFFECTTHEQUALITYOFWELDDURINGTHEWELDINGPROCESSBUTTHEWELDINGCURRENTHASTHEGREATESTEFFECTOVERASMALLRANGEOFVALUESITWASFORTHISREASON,THATTHEWELDINGCURRENTWASCHOSENTOBECONTROLLEDBYTHEVOICERECOGNITIONSYSTEMTHEWELDINGPOWERSUPPLYCONTROLSTHECURRENTLEVELTHROUGHAVOLTAGECIRCUITTHATUSESARANGEOF010VDCTHESEVOLTAGEVALUESARECONVERTEDTOCURRENTLEVELSFROM0TO300AFORWELDINGADIGITALTOANALOGCONVERTERISUSEDINCONJUNCTIONWITHAMULTIPLYINGCIRCUITTHECONVERTERALLOWSTHEVRCCTOCONTROLAVOLTAGELEVELTHATISUSEDBYTHEWELDPOWERSUPPLYTOACHIEVETHEPROPERWELDINGCURRENTTHEMULTIPLIERCIRCUITISNECESSARYTOALLOWTHEWELDPOWERSUPPLYTOBECONTROLLEDBYTHEOTHERSUBCONTROLLERUSEDINTHEWORKCELLEXPERIMENTALINVESTIGATIONTHEACCURACYANDSPEEDOFRESPONSEOFCORRECTIONSTOROBOTMANIPULATORMOTIONANDWELDINGPROCESSVARIABLESMADEWITHTHEVRCCAREBEINGCOMPAREDWITHTHOSEMADEWITHTHEORIGINALCONTROLSYSTEMSTEPINPUTEMRSTOROBOTMOTIONANDWELDINGCURRENTAREINTRODUCEDRANDOMLYINTOTHEROBOTPROGRAMBYGRAPHICALLYRECORDINGRELEVANTSYSTEMOUTPUTSIGNALSTHETIMEREQUIREDFORTHEOPERATORTODETECTTHECHANGEANDINITIATECORRECTIVEACTIONMAYBEMEASUREDRESPONSEACCURACYANDSTABILITYMAYALSOBEGAGEDTHROUGHSIMILARANALYSISOFTHERELEVANTRECORDEDSYSTEMOUTPUTSIGNALSCONCLUSIONSFUTUREWORKWILLINVESTIGATEVOICECONTROLOFWELDINGFILLERWIREFEEDSPEEDANDLOCATIONOFWIREENTRYINTOTHEWELDPOOLALSOTOBEINVESTIGATEDISVOICECONTROLOFWELDINGARCVOLTAGEOVERRIDELATER,RESTRICTIONOFACCESSTOTHEROBOTPROGRAMEDITORBYVOICERECOGNITIONMAYBEIMPLEMENTEDTHEUSEOFVOICERECOGNITIONTECHNOLOGYFORMANUALSUPERVISORYCONTROLOFINDUSTRIALROBOTSYSTEMSISVERYPROMISINGTHISTECHNOLOGYHASAPPLICATIONFORAEROSPACEWELDINGDUETOTHENEEDTOHAVECONSTANTHUMANSUPERVISIONOVERAMULTITUDEOFPROCESSPARAMETERSINREALTIMEFUTUREDEVELOPMENTOFTHISTECHNOLOGYWILLPERMITRAPIDEXPANSIONOFITSAPPLICATIONTOBOTHROBOTICANDNONROBOTICPROCESSESACKNOWLEDGMENTSPECIALTHANKSTOMRJEFFHUDSONOFMARTINMARIETTACORPORATIONFORASSISTANCEINTHEPREPARATIONOFTHEILLUSTRATIONPRESENTEDINTHISARTICLEREFERENCESICASIMPSONHLEMCCAULEYEFROLLANDJCRUTHANDBHWILLIGES“SYSTEMDESIGNFORSPEECHRECOGNITIONANDGENERATION“HUTNNNFACTORSVOL27NO2PP11511119852NATIONALRESEARCHCOUNCILCOMMITTEEONCOMPUTERIZEDSPEECHRECOGNITIONTECHNOLOGIESAUTOMATICSPEECHREROP1IRIOR1INSE\EREETRIRONNTENRSNATIONALRESEARCHCOUNCIL1984ANDCOMPUTER,“QUALI8PP1617OCT39854EJLERNER“TALKINGTOYOURAIRCRAFT“AEROSPACEAMERICAVOL24NO2PP85881986SIJTMEMLIELD“BOSINGEXPLORESVOICERECOGNITIONFORFUTURETRANSPONFLIGHTDECK“ARIARINNWEEKANDSPACETECHNO/OGVOL124NO16PP859119866ACOHENANDJDERICKSON,FUTUREUSESOFMACHINEINTELLIGENCEANDROBOTICSFORTHESPACESTATIONANDIMPLICATIONSFORTHEUSECONOMYIEEEJROBOTICSANDAUTOMARIONVOLSMC16PP11112IJANIFEB1986131TWOO“VOICETHELINKBETWEENMAN7“AUTOMATIONANDROBOTICSFORTHENATIONALSPACEPROGRAM,“CALIFORNIASPACEINSTITUTEAUTOMATIONANDROBOTICSPANELCALSPACEREPONCS118501,FEB25,1985181“ADVANCINGAUTOMATIONANDROBOTICSTECHNOLOGYFORTHESPACESTATIONANDFORTHEUSECONOMY“ADVANCEDTECHNOLOGYADVISORYCOMMITTEENASATM87566MAR1985JKEVINWATSONRECEIVEDABSDEGREEINWELDINGENGINEERINGFROMTHEOHIOSTATEUNIVERSITYIN1979ANDANMSDEGREEINMATERIALSENGINEERINGFROMRENSSELAERPOLYTECHNICINSTITUTEIN1982IN1979HEJOINEDTHETECHNICALSTAFFOFTHEROCKETDYNEDIVISIONOFROCKWELLINTERNATIONAL,WORKINGINTHEDEVELOPMENTOFWELDINGBRAZING,ANDDIFFUSIONBONDINGPROCESSESFORTHESPACESHUTTLEMAINENGINESSMEADVANCEDBOOSTERS,ANDHIGHENERGYLASERSHEHASBEENTHEMANAGEROFROCKETDYNESMARSHALLSPACEFLIGHTCENTERROBOTICSSUPPORTUNITINHUNTSVILLEALABAMASINCE1984THISGROUPISWORKINGJOINTLYWITHSASATODEVELOPADAPTIVEROBOTICTECHNOLOGIESFORWELDINGFABRICATIONOFTHESSM
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 3
大?。?0.31(MB)
子文件數(shù):
-
簡介:2950英文單詞,英文單詞,16萬英文字符,中文萬英文字符,中文4900字文獻出處文獻出處ERRATTAHIR,HANNANIAE,OUAHMANEHAUTOMATICSPEECHRECOGNITIONERRORSDETECTIONANDCORRECTIONAREVIEWJPROCEDIACOMPUTERSCIENCE,2018,1283237AUTOMATICSPEECHRECOGNITIONERRORSDETECTIONANDCORRECTIONAREVIEWRAHHALERRATTAHI,ASMAAELHANNANI,HASSANOUAHMANEABSTRACTEVENTHOUGHAUTOMATICSPEECHRECOGNITIONASRHASMATUREDTOTHEPOINTOFCOMMERCIALAPPLICATIONS,HIGHERRORRATEINSOMESPEECHRECOGNITIONDOMAINSREMAINASONEOFTHEMAINIMPEDIMENTFACTORSTOTHEWIDEADOPTIONOFSPEECHTECHNOLOGY,ANDESPECIALLYFORCONTINUOUSLARGEVOCABULARYSPEECHRECOGNITIONAPPLICATIONSTHEPERSISTENTPRESENCEOFASRERRORSHAVEINTENSIFIEDTHENEEDTOFINDALTERNATIVETECHNIQUESTOAUTOMATICALLYDETECTANDCORRECTSUCHERRORSTHECORRECTIONOFTHETRANSCRIPTIONERRORSISVERYCRUCIALNOTONLYTOIMPROVETHESPEECHRECOGNITIONACCURACY,BUTALSOTOAVOIDTHEPROPAGATIONOFTHEERRORSTOTHESUBSEQUENTLANGUAGEPROCESSINGMODULESSUCHASMACHINETRANSLATIONINTHISPAPER,BASICPRINCIPLESOFASREVALUATIONAREFIRSTSUMMARIZED,ANDTHENTHESTATEOFTHECURRENTASRERRORSDETECTIONANDCORRECTIONRESEARCHISREVIEWEDWEFOCUSONEMERGINGTECHNIQUESUSINGWORDERRORRATEMETRICKEYWORDSAUTOMATICSPEECHRECOGNITIONASRERRORDETECTIONASRERRORCORRECTIONASREVALUATION1INTRODUCTIONAUTOMATICSPEECHRECOGNITIONASRSYSTEMSAIMSATCONVERTINGASPEECHSIGNALINTOASEQUENCEOFWORDSEITHERFORTEXTBASEDCOMMUNICATIONPURPOSESORFORDEVICECONTROLLINGTHEPURPOSEOFEVALUATINGASRSYSTEMSISTOSIMULATEHUMANJUDGEMENTOFTHEPERFORMANCEOFTHESYSTEMSINORDERTOMEASURETHEIRUSEFULNESSANDASSESSTHEREMAININGDIFFICULTIESANDESPECIALLYWHENCOMPARINGSYSTEMSTHESTANDARDMETRICOFASREVALUATIONISTHEWORDERRORRATE,WHICHISDEFINEDASTHEPROPORTIONOFWORDERRORSTOWORDSPROCESSEDASRHASMATUREDTOTHEPOINTOFCOMMERCIALAPPLICATIONSBYPROVIDINGTRANSCRIPTIONWITHANACCEPTABLELEVELOFPERFORMANCEWHICHALLOWSINTEGRATIONINTOMANYAPPLICATIONSINGENERAL,ASRSYSTEMSAREEFFECTIVEWHENTHECONDITIONSAREWELLCONTROLLEDNEVERTHELESS,THEYARETOODEPENDENTONTHETASKBEINGPERFORMEDANDTHERESULTSAREFARFROMIDEAL,ANDESPECIALLYFORLARGEVOCABULARYCONTINUOUSSPEECHRECOGNITIONLVCSRAPPLICATIONSTHISLATERSTILLONEOFTHEMOSTCHALLENGINGTASKSINTHEFIELD,DUETOANUMBEROFFACTORS,INCLUDINGPOORARTICULATION,VARIABLESPEAKINGRATEANDHIGHDEGREEOFACOUSTICVARIABILITYCAUSEDBYNOISE,SIDESPEECH,ACCENTS,SLOPPYPRONUNCIATION,HESITATION,REPETITION,INTERRUPTIONSANDCHANNELMISMATCH,AND/ORDISTORTIONSTODEALWITHALLTHESEPROBLEMS,THEREHASBEENAPLETHORAOFALGORITHMSANDTECHNOLOGIESPROPOSEDBYTHESCIENTIFICCOMMUNITIESFORALLSTEPSOFLVCSROVERTHELASTDECADEPREPROCESSING,FEATUREEXTRACTION,ACOUSTICMODELING,LANGUAGEMODELING,DECODINGANDRESULTPOSTPROCESSINGNEVERTHELESSLVCSRSYSTEMSARENOTYETROBUSTWITHERRORRATESOFUPTO50UNDERCERTAINCONDITIONS21,8THEPERSISTENTPRESENCEOFASRERRORSMOTIVATESTHEATTEMPTTOFINDALTERNATIVETECHNIQUESTOASSISTUSERSINCORRECTINGTHETRANSCRIPTIONERRORSORTOTOTALLYAUTOMATETHECORRECTIONPROCESSEVALUATIONPROCEDUREINOTHERWORDS,THEREFERENCEANDRECOGNISEDWORDSGETMATCHEDINORDERTODECIDEWHICHWORDHAVEBEENDELETEDORINSERTED,ANDWHICHREFERENCERECOGNISEDSTRINGPAIRSHAVEBEENALIGNEDTOEACHOTHER,WHICHMAYRESULTINAHITORASUBSTITUTIONTHISISNORMALLYDONEBYUSINGTHEVITERBIEDITDISTANCE17TOEFFICIENTLYSELECTTHEREFERENCEANDTHERECOGNISEDWORDSEQUENCEALIGNMENTFORWHICHTHEWEIGHTEDERRORSCOREISMINIMIZEDTHEEDITDISTANCEUSUALLYALIGNSANIDENTICALWEIGHTS1FORTHELEVENSTHEINDISTANCETOALLTHREE,INSERTION,SUBSTITUTIONANDDELETIONYET,UNIFIEDWEIGHTSMAYPRESENTADOUBTTOCHOOSETHEBESTPATHALIGNMENTINTHECASEWHENWEHAVEDIFFERENTONESWHICHHAVETHESAMESCORETOAVOIDTHISPROBLEMMORRISETAL12SUGGESTUSINGDIFFERENTWEIGHTS,SUCHTHATSUBSTITUTIONWILLBEFAVOUREDTHANINSERTIONANDDELETIONINGENERAL,IT’SRECOMMENDEDTOPUTWIWD,ANDWSWIWSWHEREWI,WSANDWDARERESPECTIVELYTHEWEIGHTOFINSERTION,SUBSTITUTION,ANDDELETION23ASREVALUATIONMETRICSACCORDINGTOMCCOWANETAL11ANIDEALASREVALUATIONMETRICSHOULDBEIDIRECTMEASUREASRCOMPONENTINDEPENDENTLYONTHEASRAPPLICATION,IIOBJECTIVETHEMEASURESHOULDBECALCULATEDINANAUTOMATEDMANNER,IIIINTERPRETABLETHEABSOLUTEVALUEOFTHEMEASUREMUSTGIVEANIDEAABOUTTHEPERFORMANCE,ANDIVMODULARTHEEVALUATIONMEASURESHOULDBEGENERALTOALLOWTHOROUGHAPPLICATIONDEPENDENTANALYSISWORDERRORRATEWERISTHEMOSTPOPULARMETRICFORASREVALUATION,ITMEASURESTHEPERCENTAGEOFINCORRECTWORDSSUBSTITUTIONSS,INSERTIONSI,DELETIONSDREGARDINGTHETOTALNUMBEROFWORDSPROCESSEDITISDEFINEDASWER11WHEREITOTALNUMBEROFINSERTIONS,DTOTALNUMBEROFDELETIONS,STOTALNUMBEROFSUBSTITUTIONS,HTOTALNUMBEROFHITS,ANDN1TOTALNUMBEROFINPUTWORDSDESPITEOFBEINGTHEMOSTCOMMONLYUSED,WERHASMANYSHORTCOMINGS10FIRSTOFALL,WERISNOTATRUEPERCENTAGEBECAUSEITHASNOUPPERBOUND,SOITDOESN’TTELLYOUHOWGOODASYSTEMIS,BUTONLYTHATONEISBETTERTHANANOTHERMOREOVER,WERISNOTD/ISYMMETRIC,SOINNOISYCONDITIONSWERCOULDEXCEED100,FORTHEFACTTHATITGIVESFARMOREWEIGHTTOINSERTIONSTHANTODELETIONSTHEWERSTILLEFFECTIVEFORSPEECHRECOGNITIONWHEREERRORSCANBECORRECTEDBYTYPING,SUCHAS,DICTATIONHOWEVER,FORALMOSTANYOTHERTYPEOFSPEECHRECOGNITIONSYSTEMS,WHERETHEGOALISMORETHANTRANSCRIPTION,ITISNECESSARYTOLOOKFORANALTERNATIVE,ORADDITIONAL,EVALUATIONFRAMEWORKMANYRESEARCHERSHAVEPROPOSEDALTERNATIVEMEASURESTOSOLVETHEEVIDENTLIMITATIONSOFWERIN12ANDREWETALINTRODUCEDTWOINFORMATIONTHEORETICMEASURESOFWORDINFORMATIONCOMMUNICATEDTHEFIRSTONE,NAMEDRELATIVEINFORMATIONLOSTRIL,ISBASEDONMUTUALINFORMATIONI,ORMI7,WHICHMEASURESTHESTATISTICALDEPENDENCEBETWEENTHEINPUTWORDSXANDOUTPUTWORDSY,ANDISCALCULATEDUSINGTHESHANNONENTROPYHASFOLLOWRIL2|WITHHY-3∑1
下載積分: 10 賞幣
上傳時間:2024-03-16
頁數(shù): 14
大?。?0.04(MB)
子文件數(shù):
-
簡介:SCIENCEDIRECTAVAILABLEONLINEATWWWSCIENCEDIRECTCOMPROCEDIACOMPUTERSCIENCE128201832–3718770509?2018THEAUTHORSPUBLISHEDBYELSEVIERLTDTHISISANOPENACCESSARTICLEUNDERTHECCBYNCNDLICENSEHTTPS//CREATIVECOMMONSORG/LICENSES/BYNCND/40/SELECTIONANDPEERREVIEWUNDERRESPONSIBILITYOFTHESCIENTIFICCOMMITTEEOFTHEINTERNATIONALCONFERENCEONNATURALLANGUAGEANDSPEECHPROCESSING101016/JPROCS201803005?2018THEAUTHORSPUBLISHEDBYELSEVIERLTDTHISISANOPENACCESSARTICLEUNDERTHECCBYNCNDLICENSEHTTPS//CREATIVECOMMONSORG/LICENSES/BYNCND/40/SELECTIONANDPEERREVIEWUNDERRESPONSIBILITYOFTHESCIENTIFICCOMMITTEEOFTHEINTERNATIONALCONFERENCEONNATURALLANGUAGEANDSPEECHPROCESSINGKEYWORDSAUTOMATICSPEECHRECOGNITIONASRERRORDETECTIONASRERRORCORRECTIONASREVALUATION1INTRODUCTIONAUTOMATICSPEECHRECOGNITIONASRSYSTEMSAIMSATCONVERTINGASPEECHSIGNALINTOASEQUENCEOFWORDSEITHERFORTEXTBASEDCOMMUNICATIONPURPOSESORFORDEVICECONTROLLINGTHEPURPOSEOFEVALUATINGASRSYSTEMSISTOSIMULATEHUMANJUDGEMENTOFTHEPERFORMANCEOFTHESYSTEMSINORDERTOMEASURETHEIRUSEFULNESSANDASSESSTHEREMAININGDIFFICULTIESANDESPECIALLYWHENCOMPARINGSYSTEMSTHESTANDARDMETRICOFASREVALUATIONISTHEWORDERRORRATE,WHICHISDEFINEDASTHEPROPORTIONOFWORDERRORSTOWORDSPROCESSEDASRHASMATUREDTOTHEPOINTOFCOMMERCIALAPPLICATIONSBYPROVIDINGTRANSCRIPTIONWITHANACCEPTABLELEVELOFPERFORMANCEWHICHALLOWSINTEGRATIONINTOMANYAPPLICATIONSINGENERAL,ASRSYSTEMSAREEFFECTIVEWHENTHECONDITIONSAREWELLCONTROLLEDNEVERTHELESS,THEYARETOODEPENDENTONTHETASKBEINGPERFORMEDANDTHERESULTSAREFARFROMIDEAL,ANDESPECIALLYFORLARGEVOCABULARYCONTINUOUSSPEECHRECOGNITIONLVCSRAPPLICATIONSTHISLATERSTILLONEOFTHEMOSTCHALLENGINGTASKSINTHEFIELD,DUETOANUMBEROFFACTORS,INCLUDINGPOORARTICULATION,VARIABLE?CORRESPONDINGAUTHORTEL212523344822FAX212523394915EMAILADDRESSERRATTAHIRUCDACMAABSTRACTEVENTHOUGHAUTOMATICSPEECHRECOGNITIONASRHASMATUREDTOTHEPOINTOFCOMMERCIALAPPLICATIONS,HIGHERRORRATEINSOMESPEECHRECOGNITIONDOMAINSREMAINASONEOFTHEMAINIMPEDIMENTFACTORSTOTHEWIDEADOPTIONOFSPEECHTECHNOLOGY,ANDESPECIALLYFORCONTINUOUSLARGEVOCABULARYSPEECHRECOGNITIONAPPLICATIONSTHEPERSISTENTPRESENCEOFASRERRORSHAVEINTENSIFIEDTHENEEDTOFINDALTERNATIVETECHNIQUESTOAUTOMATICALLYDETECTANDCORRECTSUCHERRORSTHECORRECTIONOFTHETRANSCRIPTIONERRORSISVERYCRUCIALNOTONLYTOIMPROVETHESPEECHRECOGNITIONACCURACY,BUTALSOTOAVOIDTHEPROPAGATIONOFTHEERRORSTOTHESUBSEQUENTLANGUAGEPROCESSINGMODULESSUCHASMACHINETRANSLATIONINTHISPAPER,BASICPRINCIPLESOFASREVALUATIONAREFIRSTSUMMARIZED,ANDTHENTHESTATEOFTHECURRENTASRERRORSDETECTIONANDCORRECTIONRESEARCHISREVIEWEDWEFOCUSONEMERGINGTECHNIQUESUSINGWORDERRORRATEMETRICINTERNATIONALCONFERENCEONNATURALLANGUAGEANDSPEECHPROCESSING,ICNLSP2015AUTOMATICSPEECHRECOGNITIONERRORSDETECTIONANDCORRECTIONAREVIEWRAHHALERRATTAHIA,?,ASMAAELHANNANIA,HASSANOUAHMANEAALABORATORYOFINFORMATIONTECHNOLOGIES,NATIONALSCHOOLOFAPPLIEDSCIENCES,UNIVERSITYOFCHOUAIBDOUKKALI,ELJADIDAMOROCCO34RAHHALERRATTAHIETAL/PROCEDIACOMPUTERSCIENCE128201832–37AKEYPRACTICALISSUEWITHASREVALUATIONMETRICSCALCULATIONISFINDINGTHEWORDALIGNMENTBETWEENTHEREFERENCEANDTHEAUTOMATICTRANSCRIPTION,WHICHCONSTITUTETHEFIRSTSTEPINTHEEVALUATIONPROCEDUREINOTHERWORDS,THEREFERENCEANDRECOGNISEDWORDSGETMATCHEDINORDERTODECIDEWHICHWORDHAVEBEENDELETEDORINSERTED,ANDWHICHREFERENCERECOGNISEDSTRINGPAIRSHAVEBEENALIGNEDTOEACHOTHER,WHICHMAYRESULTINAHITORASUBSTITUTIONTHISISNORMALLYDONEBYUSINGTHEVITERBIEDITDISTANCE17TOEFFICIENTLYSELECTTHEREFERENCEANDTHERECOGNISEDWORDSEQUENCEALIGNMENTFORWHICHTHEWEIGHTEDERRORSCOREISMINIMIZEDTHEEDITDISTANCEUSUALLYALIGNSANIDENTICALWEIGHTS1FORTHELEVENSTHEINDISTANCETOALLTHREE,INSERTION,SUBSTITUTIONANDDELETIONYET,UNIFIEDWEIGHTSMAYPRESENTADOUBTTOCHOOSETHEBESTPATHALIGNMENTINTHECASEWHENWEHAVEDIFFERENTONESWHICHHAVETHESAMESCORETOAVOIDTHISPROBLEMMORRISETAL12SUGGESTUSINGDIFFERENTWEIGHTS,SUCHTHATSUBSTITUTIONWILLBEFAVOUREDTHANINSERTIONANDDELETIONINGENERAL,IT’SRECOMMENDEDTOPUTWIWD,ANDWSWIWSWHEREWI,WSANDWDARERESPECTIVELYTHEWEIGHTOFINSERTION,SUBSTITUTION,ANDDELETION23ASREVALUATIONMETRICSACCORDINGTOMCCOWANETAL11ANIDEALASREVALUATIONMETRICSHOULDBEIDIRECTMEASUREASRCOMPONENTINDEPENDENTLYONTHEASRAPPLICATION,IIOBJECTIVETHEMEASURESHOULDBECALCULATEDINANAUTOMATEDMANNER,IIIINTERPRETABLETHEABSOLUTEVALUEOFTHEMEASUREMUSTGIVEANIDEAABOUTTHEPERFORMANCE,ANDIVMODULARTHEEVALUATIONMEASURESHOULDBEGENERALTOALLOWTHOROUGHAPPLICATIONDEPENDENTANALYSISWORDERRORRATEWERISTHEMOSTPOPULARMETRICFORASREVALUATION,ITMEASURESTHEPERCENTAGEOFINCORRECTWORDSSUBSTITUTIONSS,INSERTIONSI,DELETIONSDREGARDINGTHETOTALNUMBEROFWORDSPROCESSEDITISDEFINEDASWERSDIN1SDIHSD1WHEREITOTALNUMBEROFINSERTIONS,DTOTALNUMBEROFDELETIONS,STOTALNUMBEROFSUBSTITUTIONS,HTOTALNUMBEROFHITS,ANDN1TOTALNUMBEROFINPUTWORDSDESPITEOFBEINGTHEMOSTCOMMONLYUSED,WERHASMANYSHORTCOMINGS10FIRSTOFALL,WERISNOTATRUEPERCENTAGEBECAUSEITHASNOUPPERBOUND,SOITDOESN’TTELLYOUHOWGOODASYSTEMIS,BUTONLYTHATONEISBETTERTHANANOTHERMOREOVER,WERISNOTD/ISYMMETRIC,SOINNOISYCONDITIONSWERCOULDEXCEED100,FORTHEFACTTHATITGIVESFARMOREWEIGHTTOINSERTIONSTHANTODELETIONSTHEWERSTILLEFFECTIVEFORSPEECHRECOGNITIONWHEREERRORSCANBECORRECTEDBYTYPING,SUCHAS,DICTATIONHOWEVER,FORALMOSTANYOTHERTYPEOFSPEECHRECOGNITIONSYSTEMS,WHERETHEGOALISMORETHANTRANSCRIPTION,ITISNECESSARYTOLOOKFORANALTERNATIVE,ORADDITIONAL,EVALUATIONFRAMEWORKMANYRESEARCHERSHAVEPROPOSEDALTERNATIVEMEASURESTOSOLVETHEEVIDENTLIMITATIONSOFWERIN12ANDREWETALINTRODUCEDTWOINFORMATIONTHEORETICMEASURESOFWORDINFORMATIONCOMMUNICATEDTHEFIRSTONE,NAMEDRELATIVEINFORMATIONLOSTRIL,ISBASEDONMUTUALINFORMATIONI,ORMI7,WHICHMEASURESTHESTATISTICALDEPENDENCEBETWEENTHEINPUTWORDSXANDOUTPUTWORDSY,ANDISCALCULATEDUSINGTHESHANNONENTROPYHASFOLLOWRILHY|XHY2WITHHY?N?I1PYILOGPYI3ANDHX|Y??I,JPXI,YJLOGPXI,YJ4NEVERTHELESS,THERILSTILLTOOFARFROMANADEQUATEPERFORMANCEMETRIC,SINCEITISNOTSIMPLETOAPPLYANDITMEASURESZEROERRORFORANYONEONEMAPPINGBETWEENI/OWORDS,WHICHDOESNOTRESPONDTOTHECRITERIAOFANIDEAL
下載積分: 10 賞幣
上傳時間:2024-03-14
頁數(shù): 6
大?。?0.32(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?0.06(MB)
子文件數(shù):
-
簡介:中文中文2740字文獻出處文獻出處KLEMPKARANEWMETHODFORTHECTYPEPASSIVEFILTERDESIGNJPRZEGLADELEKTROTECHNICZNY,2012,887A277281本科畢業(yè)設(shè)計外文翻譯外文譯文題目(中文)C型無源濾波器的一種新型設(shè)計方法學院信息學院專業(yè)電氣工程及其自動化學號學生姓名學生姓名指導(dǎo)教師指導(dǎo)教師日期摘要論文介紹了新型C型諧波電力濾波器設(shè)計過程。其目的在于在一個工業(yè)供電系統(tǒng)中減少全部的諧波失真。C型濾波器的新型設(shè)計方法是被建議的,也是被工業(yè)發(fā)電所需要的。在設(shè)計階段,對于新的計算程序的基礎(chǔ)是假設(shè)諧波電流的要求分配在供電網(wǎng)絡(luò)與被用于調(diào)諧的濾波器之間,這個方法考慮了網(wǎng)絡(luò)的等效阻抗。關(guān)鍵詞無源濾波器;補償;電力系統(tǒng)諧波;C型濾波器1引言安裝在工廠的大功率非線性負載數(shù)量不斷增加的原因是無源諧波濾波器仍然是在連接點處減小電壓畸變的最普通的方式,許多不同結(jié)構(gòu)和不同運行特性的無源LC濾波系統(tǒng)已經(jīng)被開發(fā)出來了,然而,單調(diào)諧單分支濾波器仍然是工業(yè)應(yīng)用的主導(dǎo)解決方式,而且它缺失是理解更先進濾波結(jié)構(gòu)(如C型濾波器)的基礎(chǔ)。另一個方法是有源濾波器或者是混合濾波器(結(jié)合了有源濾波器與無源濾波器)。這種設(shè)計和控制能成為一個使用人工智能方法的任務(wù),如神經(jīng)網(wǎng)絡(luò)或者遺傳算法。目前大多數(shù)使用的濾波補償裝置結(jié)構(gòu)的主要劣勢是高頻時的濾波能力差。C型濾波器使被包含在寬帶濾波器的范疇之中。寬帶濾波器有其他優(yōu)點,當寬帶濾波器與電力電子整流器合作時,寬帶濾波器使持續(xù)的,寬帶濾波器能比單支濾波器更有效率地抑制換向缺口,即它們有更寬的寬帶。寬帶濾波器也能更高效地消除間入簡諧分量(在鄰著特征諧波的邊頻帶上,其由靜態(tài)頻率轉(zhuǎn)換器產(chǎn)生)。C型濾波器與單支濾波器相比,也能夠減少有功功率的損失,因為電容電感串聯(lián)支路被調(diào)諧到基波諧振頻率,基波諧波電流沒通過電阻,避免了大功率的損耗。確立C型濾波器參數(shù)的方法在后面介紹。復(fù)雜的無源濾波器更頻繁地用人工智能的方法被設(shè)計。如遺傳算法,也能在解決其他問題上更有效。2C型濾波器參數(shù)的確定對于C性濾波器參數(shù)確定,論文介紹了一種新的方法。大功率系統(tǒng)的濾波器設(shè)計是一個復(fù)雜的任務(wù),除了確定參數(shù)使之滿足設(shè)計要求,還需檢查由于與電力系統(tǒng)中其他有源元件相互作用而產(chǎn)生的可能的共振點。C型濾波器參數(shù)可通過下面的關(guān)系確定,此論文介紹了一種新的,更簡單的方法去確定參數(shù),在設(shè)計階段,這方法包括假設(shè)(在被調(diào)諧到諧波的)濾波器和供電網(wǎng)之間的諧波電流的需求分配。這個方法需要考慮網(wǎng)絡(luò)等效阻抗。
下載積分: 10 賞幣
上傳時間:2024-03-12
頁數(shù): 11
大?。?0.55(MB)
子文件數(shù):
-
下載積分: 14 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?2.09(MB)
子文件數(shù):
-
下載積分: 14 賞幣
上傳時間:2024-01-07
頁數(shù): 0
大?。?2.09(MB)
子文件數(shù):
-
簡介:PRZEGL?DELEKTROTECHNICZNYELECTRICALREVIEW,ISSN00332097,R88NR7A/2012277RYSZARDKLEMPKAAKADEMIAGóRNICZOHUTNICZA,WYDZIA?ELEKTROTECHNIKI,AUTOMATYKI,INFORMATYKIIELEKTRONIKIANEWMETHODFORTHECTYPEPASSIVEFILTERDESIGNABSTRACTTHEPAPERPRESENTSTHENEWCTYPEHIGHHARMONICPOWERFILTERDESIGNPROCESSWHOSEAIMISTHEREDUCTIONOFTOTALHARMONICDISTORTIONINANINDUSTRIALPOWERSUPPLYSYSTEMANEWMETHODFORCTYPEFILTERDESIGNISPROPOSEDANDANEXAMPLEOFTHEMETHODAPPLICATIONTOANINDUSTRIALPLANTISPROVIDEDTHEBASISFORTHENEWALGORITHMISASSUMING,ATTHEDESIGNPHASE,THEREQUIREDDISTRIBUTIONOFTHEHARMONICCURRENTBETWEENTHEFILTERTOBETUNEDTOTHATHARMONICANDTHESUPPLYNETWORKTHISMETHODTAKESINTOCONSIDERATIONTHENETWORKEQUIVALENTIMPEDANCESTRESZCZENIENINIEJSZYARTYKU?PRZEDSTAWIAPROJEKTOWANIEENERGETYCZNEGOFILTRUTYPUCWY?SZYCHHARMONICZNYCH,KTóREGOZADANIEMJESTZMNIEJSZENIEWSPó?CZYNNIKAZAWARTO?CIHARMONICZNYCHWPRZEMYS?OWYMSYSTEMIEZASILANIAZAPROPONOWANONOW?METOD?PROJEKTOWANIACFILTRUORAZPRZEDSTAWIONOPRZYK?ADZASTOSOWANIATEJMETODYPROJEKTOWANIAWPRAKTYCEDLAZAK?ADUPRZEMYS?OWEGONOWAMETODAPROJEKTOWANIAFILTRUTYPUCKEYWORDSPASSIVEFILTER,COMPENSATION,POWERSYSTEMHARMONICS,CTYPEFILTERS?OWAKLUCZOWEFILTRYPASYWNE,KOMPENSACJAMOCYBIERNEJ,HARMONICZNE,FILTRTYPUCINTRODUCTIONANEVERINCREASINGNUMBEROFLARGEPOWERNONLINEARLOADS,INSTALLEDININDUSTRYISTHEREASONTHATPASSIVEHARMONICFILTERSARESTILLTHEMOSTCOMMONWAYTOREDUCEVOLTAGEDISTORTIONATTHEIRPOINTSOFCONNECTIONMANYPASSIVELCFILTERSYSTEMS,OFVARIOUSSTRUCTURESANDDIFFERENTOPERATINGCHARACTERISTICSHAVEBEENDEVELOPED1–4NEVERTHELESS,THESINGLETUNEDSINGLEBRANCHFILTERSTILLISTHEDOMINANTSOLUTIONFORINDUSTRIALAPPLICATIONS,ANDITCERTAINLYISTHEBASISFORUNDERSTANDINGMOREADVANCEDFILTERINGSTRUCTURES,SUCHASTHECTYPEFILTERANALTERNATIVESOLUTIONCANBEACTIVEFILTERSORHYBRIDFILTERSTHATCOMBINETHESESTRUCTURES5–7BOTHTHEDESIGNANDCONTROLOFSUCHSYSTEMSCANBEATASKEMPLOYINGARTIFICIALINTELLIGENCEMETHODS,EGNEURALNETWORKSORGENETICALGORITHMS8–10THEPRINCIPALDISADVANTAGEOFTHEMAJORITYOFCURRENTLYUSEDFILTERCOMPENSATINGDEVICESTRUCTURESISPOORFILTERINGOFHIGHFREQUENCIESINORDERTOELIMINATETHESEDISADVANTAGESAREUSUALLYUSEDBROADBANDDAMPEDFILTERSOFTHEFIRST,SECONDORTHIRDORDERTHECTYPEFILTERISINCLUDEDINTHECATEGORYOFBROADBANDFILTERSBROADBANDFILTERSHAVEADDITIONALADVANTAGE,SUBSTANTIALFORTHEIRCOOPERATIONWITHPOWERELECTRONICCONVERTERSTHEYDAMPCOMMUTATIONNOTCHESMOREEFFECTIVELYTHANSINGLEBRANCHFILTERSTHEYHAVEAMUCHBROADERBANDWIDTHTHEYALSOMOREEFFECTIVELYELIMINATEINTERHARMONICCOMPONENTSINSIDEBANDSADJACENTTOCHARACTERISTICHARMONICSGENERATEDBYSTATICFREQUENCYCONVERTERSTHATFILTER,ASCOMPAREDTOSINGLEBRANCHFILTERS,ALSOENSURESREDUCTIONOFACTIVEPOWERLOSSESBECAUSETHE22CLBRANCHFIG1ISTUNEDTOTHEFUNDAMENTALHARMONICFREQUENCYTHEFUNDAMENTALHARMONICCURRENTISNOTPASSINGTHROUGHTHERESISTORRT,AVOIDINGTHEREFORELARGEPOWERLOSSESTHEMETHODFORDETERMININGCTYPEFILTERPARAMETERSISDESCRIBEDIN11COMPLEXPASSIVEFILTERSAREMOREANDMOREOFTENDESIGNEDUSINGARTIFICIALINTELLIGENCEMETHODS,LIKEGENETICALGORITHMS12–13THATCANALSOBEEFFECTIVEINSOLVINGOTHERPROBLEMS14–20DETERMINATIONOFTHECTYPEFILTERPARAMETERSTHEPAPERDESCRIBESANEWMETHODFORDETERMININGTHECTYPEFILTERPARAMETERSDESIGNINGOFFILTERSFORLARGEPOWERSYSTEMSISACOMPLEXTASKASIDEOFDETERMININGTHEFILTERPARAMETERSTOMEETTHEDESIGNREQUIREMENTS,THEFILTERSHALLBECHECKEDFORPOSSIBLERESONANCEOCCURRENCESDUETOINTERACTIONWITHOTHERPASSIVECOMPONENTSINTHEPOWERSYSTEM21–22THEFILTERPARAMETERSCANBEDETERMINEDFROMRELATIONSGIVENIN11THISPAPERPROPOSESANEW,ANDSIMPLER,METHODFORDETERMININGTHEFILTERPARAMETERSTHEMETHODCONSISTSINASSUMING,ATTHEDESIGNPHASE,THEDESIREDDISTRIBUTIONOFTHEHARMONICCURRENTBETWEENTHEFILTERTUNEDTOTHATHARMONICANDTHESUPPLYNETWORKTHISMETHODREQUIRESTAKINGINTOCONSIDERATIONTHENETWORKEQUIVALENTIMPEDANCETHECTYPEFILTERDIAGRAMISSHOWNINFIG1FIG1THECTYPEFILTERCIRCUITTHEFILTERIMPEDANCEISGIVENBY112222111CJCJLJRRCJLJZTTF??????????????????THEL2ANDC2COMPONENTSARETUNEDTOTHEFUNDAMENTALFREQUENCY222121CL??HENCE3????12122212121CJJCRJRZTTF????????????THECTYPEFILTERISTUNEDTOTHERESONANCEANGULARFREQUENCY1??RRN?4??1121221212?????RRNCCCCCCL?HENCERTL2C2C1UIFISILOADLOADPRZEGL?DELEKTROTECHNICZNYELECTRICALREVIEW,ISSN00332097,R88NR7A/2012279FIG3FREQUENCYIMPEDANCECHARACTERISTICSOFATHEPOWERNETWORKEQUIVALENTIMPEDANCEZS,THERESULTANTIMPEDANCEOFTWO3RDHARMONICFILTERSZ2X3H,THECTYPEFILTERIMPEDANCEZCFILTER,THERESULTANTIMPEDANCEOFTWO3RDHARMONICFILTERSANDTHECTYPEFILTERZFBTHEIMPEDANCESEENFROMTHELOADTERMINALSWITHOUTFILTERSZS,THENETWORKEQUIVALENTIMPEDANCEANDTWO3RDHARMONICFILTERSIMPEDANCECONNECTEDINPARALLELZS||Z2X3H,ANDPARALLELCONNECTIONOFTHENETWORKEQUIVALENTIMPEDANCE,TWO3RDHARMONICFILTERSANDTHECTYPEFILTERIMPEDANCESZS||Z2X3H||ZCFILTERFIGURE4ASHOWSTHECTYPEFILTERFREQUENCYCHARACTERISTICSFORDIFFERENTQUALITYFACTORS,FIGURE4BILLUSTRATESTHERELATIONBETWEENTHERESISTANCERTANDTHECOEFFICIENTKTHATINDICATESTHEDISTRIBUTIONOFTHECURRENTHARMONICTOWHICHTHEFILTERISTUNEDTABLE3THEPERCENTAGEDISTRIBUTIONOFTHEHARMONICCURRENTBETWEENTHEFILTERTUNEDTOTHATHARMONICANDTHESUPPLYNETWORKTHECORRESPONDINGRTVALUESANDTHEDESIGNEDFILTERQUALITYFACTORIFISKRT?385615160172444556125221500500100276865194810933005714290753506663330505557502500338408331670251111910900102778DATAINTABLE3SHOWSTHEPERCENTAGEDISTRIBUTIONOFTHEHARMONICCURRENTBETWEENTHEFILTERTUNEDTOTHATHARMONICANDTHESUPPLYNETWORKTHEVALUESOFTHEFACTORKCORRESPONDINGTOTHERTVALUESAREALSOPROVIDEDINTHETABLEFIG4ATHECTYPEFILTERFREQUENCYCHARACTERISTICSFORVARIOUSQUALITYFACTORS,BTHERESISTANCERTVSTHECOEFFICIENTKIMPLEMENTATIONANDMEASUREMENTSINORDERTOVERIFYTHEEFFECTIVENESSOFTHEPROPOSEDMETHODHASBEENDESIGNEDACTYPEFILTERFORANELECTRICARCFURNACEPOWERSUPPLYSYSTEMFIG,2THEDESIGNEDCTYPEFILTERWASINSTALLEDINTHEARCFURNACESUPPLYSYSTEMTHECAPACITANCEC1ISCOMPOSEDOF60CAPACITORS20PERPHASEWITHCAPACITANCE1415?FEACH,WHICHGIVESTOTALCAPACITANCEC17075?FTHECAPACITANCEC2ISCOMPOSEDOF24CAPACITORS8PERPHASEWITHCAPACITANCES246?FEACH,WHICHGIVESTOTALCAPACITANCEC21968?FTHEREACTORL2PARAMETERSSHOULDBERECALCULATEDBECAUSEOFALTERATIONOFTHECAPACITANCEC2DUETOTHEINSTALLATIONMODIFICATIONSL25148MHTHERESISTORRESISTANCEISRT300??10THEDIAGRAMOFTHEACTUALSINGLEPHASEFILTERCIRCUITISDEPICTEDINFIG5FIG5DIAGRAMOFTHEACTUALCTYPEFILTERCIRCUIT115225335405101520253035404550NZCFILTRZ2X3HZSZF|ZCFILTR||Z2X3H||ZS||ZF|A1152253354012345678910NZSZS||Z2X3HZS||Z2X3H||ZCFILTER|ZS||Z2X3H||ZCFILTR||ZS||Z2X3H||ZS|BRFXZRNNA0123456024681012R??QF220QF210QF215QF210QF215QF220RTK0020406081121416050010001500200025003000K1R27686K033R840B8X246?F20X1415?F300?5148MH
下載積分: 10 賞幣
上傳時間:2024-03-13
頁數(shù): 5
大?。?0.37(MB)
子文件數(shù):
-
下載積分: 13 賞幣
上傳時間:2023-07-21
頁數(shù): 0
大?。?0.29(MB)
子文件數(shù):